Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations

This article surveys the recent developments in computational methods for second order fully nonlinear partial differential equations (PDEs), a relatively new subarea within numerical PDEs. Due to their ever increasing importance in mathematics itself (e.g., differential geometry and PDEs) and in many scientific and engineering fields (e.g., astrophysics, geostrophic fluid dynamics, grid generation, image processing, optimal transport, meteorology, mathematical finance, and optimal control), numerical solutions to fully nonlinear second order PDEs have garnered a great deal of interest from the numerical PDE and scientific communities. Significant progress has been made for this class of problems in the past few years, but many problems still remain open. This article intends to introduce these current advancements and new results to the SIAM community and generate more interest in numerical methods for fully nonlinear PDEs.

[1]  Nonlocal Inpainting Primal Dual Algorithms for Convex Models and Applications to Image Restoration, Registration , 2010 .

[2]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[3]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[4]  L. Ambrosio Optimal transport maps in Monge-Kantorovich problem , 2003, math/0304389.

[5]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[6]  G. Loeper,et al.  Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .

[7]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[8]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[9]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[10]  R. Glowinski Finite element methods for incompressible viscous flow , 2003 .

[11]  Adam M. Oberman,et al.  Two Numerical Methods for the elliptic Monge-Ampère equation , 2010 .

[12]  Chi-Tien Lin,et al.  High-Resolution Nonoscillatory Central Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[13]  Uriel Frisch,et al.  The Monge-Ampère equation: Various forms and numerical solution , 2009, J. Comput. Phys..

[14]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach , 2004 .

[15]  Joel Spruck,et al.  Locally convex hypersurfaces of constant curvature with boundary , 2004 .

[16]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[17]  Roland Glowinski,et al.  Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach , 2003 .

[18]  Joel Spruck,et al.  Boundary-value problems on $\mathbb{S}^n$ for surfaces of constant Gauss curvature , 1993 .

[19]  Brian J. Hoskins,et al.  The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .

[20]  R. Glowinski,et al.  Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem , 1977 .

[21]  H. Ishii On uniqueness and existence of viscosity solutions of fully nonlinear second‐order elliptic PDE's , 1989 .

[22]  Steve Bryson,et al.  High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations , 2013, SIAM J. Numer. Anal..

[23]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[24]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[25]  Luis Silvestre,et al.  On the Evans-Krylov theorem , 2009, 0905.1336.

[26]  R. Glowinski,et al.  An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. , 2006 .

[27]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[28]  George J. Haltiner,et al.  Numerical weather prediction , 1971 .

[29]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[30]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[31]  A. V. Pogorelov Extrinsic geometry of convex surfaces , 1973 .

[32]  Robert D. Russell,et al.  A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations , 2008, J. Comput. Phys..

[33]  Frank Baginski,et al.  Numerical solutions of boundary value problems for Κ-surfaces inR3 , 1996 .

[34]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1990, 29th IEEE Conference on Decision and Control.

[35]  N. Trudinger,et al.  The Monge-Ampµere equation and its geometric applications , 2008 .

[36]  Michael Cullen,et al.  Lagrangian Solutions of Semigeostrophic Equations in Physical Space , 2006, SIAM J. Math. Anal..

[37]  Pengfei Guan,et al.  Convex hypersurfaces of prescribed curvature , 2002 .

[38]  Allen Tannenbaum,et al.  On the Computation of Optimal Transport Maps Using Gradient Flows and Multiresolution Analysis , 2008, Recent Advances in Learning and Control.

[39]  Ioannis Karatzas,et al.  Adaptive control of a diffusion to a goal and a parabolic Monge–Ampère-type equation , 1997 .

[40]  Adam M. Oberman,et al.  Convergent Finite Difference Solvers for Viscosity Solutions of the Elliptic Monge-Ampère Equation in Dimensions Two and Higher , 2010, SIAM J. Numer. Anal..

[41]  R. Pierre,et al.  Mixed finite element for the linear plate problem: the Hermann-Miyoshi model revisited , 1996 .

[42]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[43]  Xiaobing Feng,et al.  A Modified Characteristic Finite Element Method for a Fully Nonlinear Formulation of the Semigeostrophic Flow Equations , 2008, SIAM J. Numer. Anal..

[44]  Adam M. Oberman,et al.  Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation , 2010, J. Comput. Phys..

[45]  L. Caffarelli The Monge-Ampère Equation and Optimal Transportation, an elementary review , 2003 .

[46]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[47]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[48]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[49]  Yann Brenier,et al.  Weak Existence for the Semigeostrophic Equations Formulated as a Coupled Monge-Ampère/Transport Problem , 1998, SIAM J. Appl. Math..

[50]  C. Villani The founding fathers of optimal transport , 2009 .

[51]  Roland Glowinski,et al.  Iterative solution of the stream function-vorticity formulation of the stokes problem, applications to the numerical simulation of incompressible viscous flow , 1991 .

[52]  Espen R. Jakobsen,et al.  ON THE RATE OF CONVERGENCE OF APPROXIMATION SCHEMES FOR BELLMAN EQUATIONS ASSOCIATED WITH OPTIMAL STOPPING TIME PROBLEMS , 2003 .

[53]  David J. Raymond,et al.  Nonlinear Balance and Potential‐Vorticity Thinking At Large Rossby Number , 1992 .

[54]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[55]  A. V. Pogorelov,et al.  Monge-Ampère equations of elliptic type , 1964 .

[56]  Gunnar Aronsson,et al.  On certain singular solutions of the partial differential equation ux2uxx+2uxuyuxy+uy2uyy=0 , 1984 .

[57]  Adam M. Oberman A convergent difference scheme for the infinity Laplacian: construction of absolutely minimizing Lipschitz extensions , 2004, Math. Comput..

[58]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[59]  L. Evans,et al.  Various Properties of Solutions of the Infinity-Laplacian Equation , 2005 .

[60]  Chi-Wang Shu HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .

[61]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[62]  N. Trudinger,et al.  Discrete methods for fully nonlinear elliptic equations , 1992 .

[63]  Srdjan Stojanovic,et al.  Risk premium and fair option prices under stochastic volatility: the HARA solution , 2005 .

[64]  Xiaobing Feng,et al.  Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method , 2007, SIAM J. Numer. Anal..

[65]  J. F. Williams,et al.  MOVING MESH GENERATION USING THE PARABOLIC MONGE–AMPÈRE EQUATION∗ , 2008 .

[66]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[67]  Guy Barles,et al.  Error Bounds for Monotone Approximation Schemes for Hamilton-Jacobi-Bellman Equations , 2005, SIAM J. Numer. Anal..

[68]  U. Frisch,et al.  Reconstruction of the early Universe as a convex optimization problem , 2003 .

[69]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations , 2009 .

[70]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[71]  N. Krylov Controlled Diffusion Processes , 1980 .

[72]  J. Benamou NUMERICAL RESOLUTION OF AN \UNBALANCED" MASS TRANSPORT PROBLEM , 2003 .

[73]  Bo Guan,et al.  On the existence and regularity of hypersurfaces of prescribed Gauss curvature with boundary , 1995 .

[74]  R. Jensen Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient , 1993 .

[75]  L. Caffarelli,et al.  Weak solutions of one inverse problem in geometric optics , 2008 .

[76]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[77]  Xiaobing Feng,et al.  Analysis of Galerkin Methods for the Fully Nonlinear Monge-Ampère Equation , 2007, J. Sci. Comput..

[78]  E. N. Barron,et al.  The Euler Equation and¶Absolute Minimizers of L∞ Functionals , 2001 .

[79]  Roland Glowinski,et al.  Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type , 2006 .

[80]  Yann Brenier,et al.  A MODIFIED LEAST ACTION PRINCIPLE ALLOWING MASS CONCENTRATIONS FOR THE EARLY UNIVERSE RECONSTRUCTION PROBLEM , 2011 .

[81]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[82]  Michael Neilan,et al.  A nonconforming Morley finite element method for the fully nonlinear Monge-Ampère equation , 2010, Numerische Mathematik.

[83]  Stanley Osher,et al.  A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations , 2011, J. Comput. Phys..

[84]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .

[85]  Michael Schäfer,et al.  Parallel Algorithms for the Numerical Solution of Incompressible Finite Elasticity Problems , 1991, SIAM J. Sci. Comput..

[86]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[87]  N. Trudinger,et al.  Boundary regularity for the Monge-Ampere and affine maximal surface equations , 2005, math/0509342.

[88]  J. Milnor Topology from the differentiable viewpoint , 1965 .

[89]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[90]  Susanne C. Brenner,et al.  C0 penalty methods for the fully nonlinear Monge-Ampère equation , 2011, Math. Comput..

[91]  J. Barrett,et al.  A MIXED FORMULATION OF THE MONGE-KANTOROVICH EQUATIONS , 2007 .

[92]  G. Loeper,et al.  A Fully Nonlinear Version of the Incompressible Euler Equations: The Semigeostrophic System , 2006, SIAM J. Math. Anal..

[93]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[94]  Gunnar Aronsson,et al.  On the partial differential equationux2uxx+2uxuyuxy+uy2uyy=0 , 1968 .

[95]  M. Crandall,et al.  A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING FUNCTIONS , 2004 .

[96]  R. Jensen The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations , 1988 .

[97]  U. Frisch,et al.  A reconstruction of the initial conditions of the Universe by optimal mass transportation , 2001, Nature.

[98]  John Urbas THE SECOND BOUNDARY VALUE PROBLEM FOR A CLASS OF HESSIAN EQUATIONS , 2001 .

[99]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[100]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[101]  J. Barrett,et al.  Partial L1 Monge–Kantorovich problem: variational formulation and numerical approximation , 2009 .

[102]  Michael E. Taylor,et al.  Partial Differential Equations II: Qualitative Studies of Linear Equations , 1996 .

[103]  Jianliang Qian,et al.  Approximations for Viscosity Solutions of Hamilton-Jacobi Equations With Locally Varying Time and Space Grids , 2006, SIAM J. Numer. Anal..

[104]  Roland Glowinski,et al.  On the numerical solution of a two-dimensional Pucci's equation with dirichlet boundary conditions : a least-squares approach , 2005 .

[105]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[106]  Roya Mohayaee,et al.  The Monge-Ampère-Kantorovich approach to reconstruction in cosmology , 2007, 0712.2561.

[107]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[108]  Gian Luca Delzanno,et al.  The fluid dynamic approach to equidistribution methods for grid adaptation , 2011, Comput. Phys. Commun..

[109]  Lei Zhu,et al.  An Image Morphing Technique Based on Optimal Mass Preserving Mapping , 2007, IEEE Transactions on Image Processing.

[110]  L. D. Prussner,et al.  On the numerical solution of the equation ∂2z/∂x2 ∂2z/∂y2−(∂2z/∂x∂y)2=f and its discretizations. I , 1988 .

[111]  Roger Thelwell The Nonlinear Balance Equation : a Survey of Numerical Methods , .

[112]  P. Lions,et al.  Convergent difference schemes for nonlinear parabolic equations and mean curvature motion , 1996 .

[113]  Bernardo Cockburn,et al.  A posteriori error estimates for general numerical methods for Hamilton-Jacobi equations. Part I: The steady state case , 2001, Math. Comput..

[114]  Gerard Awanou Spline element method for Monge–Ampère equations , 2015 .

[115]  Roland Glowinski,et al.  On the Numerical Solution of the Elliptic Monge—Ampère Equation in Dimension Two: A Least-Squares Approach , 2008 .

[116]  Matthew J. Gursky,et al.  An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature , 2002 .

[117]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[118]  Michael G. Crandall,et al.  Lp- Theory for fully nonlinear uniformly parabolic equations , 2000 .

[119]  Adam M. Oberman,et al.  Exact semi-geostrophic flows in an elliptical ocean basin , 2004 .

[120]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[121]  Joel Spruck,et al.  The Existence of Hypersurfaces of Constant Gauss Curvature with Prescribed Boundary , 2002 .

[122]  Guy Barles,et al.  On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations , 2002 .

[123]  Xiaobing Feng,et al.  Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations , 2007, 0708.1758.

[124]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[125]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[126]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[127]  Allen R. Tannenbaum,et al.  An Efficient Numerical Method for the Solution of the L2 Optimal Mass Transfer Problem , 2010, SIAM J. Sci. Comput..

[128]  N. Krylov On the rate of convergence of finite-difference approximations for Bellmans equations with variable coefficients , 2000 .

[129]  N. Krylov,et al.  BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS , 1983 .

[130]  E. N. Barron,et al.  The infinity Laplacian, Aronsson’s equation and their generalizations , 2008 .

[131]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[132]  Cristian E. Gutiérrez,et al.  The Monge―Ampère Equation , 2001 .

[133]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[134]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[135]  Stefan Turek,et al.  Mathematical and Numerical Analysis of a Robust and Efficient Grid Deformation Method in the Finite Element Context , 2008, SIAM J. Sci. Comput..

[136]  R. S. Falk,et al.  Error estimates for mixed methods , 1980 .

[137]  Espen R. Jakobsen,et al.  ERROR ESTIMATES FOR FINITE DIFFERENCE-QUADRATURE SCHEMES FOR A CLASS OF NONLOCAL BELLMAN EQUATIONS WITH VARIABLE DIFFUSION COEFFICIENTS , 2006 .

[138]  S. C. Brenner,et al.  Finite element approximations of the three dimensional Monge-Ampère equation , 2012 .

[139]  E. C. Zachmanoglou,et al.  Introduction to partial differential equations with applications , 1976 .

[140]  Harold J. Kushner,et al.  Probability Methods for Approximations in Stochastic Control and for Elliptic Equations , 2012 .

[141]  N. Trudinger,et al.  On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.

[142]  S. Yau,et al.  On the regularity of the solution of the n‐dimensional Minkowski problem , 1976 .

[143]  Roland Glowinski,et al.  Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization , 2008, J. Num. Math..

[144]  Adam M. Oberman Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian , 2008 .

[145]  J. Sethian,et al.  Numerical Schemes for the Hamilton-Jacobi and Level Set Equations on Triangulated Domains , 1998 .

[146]  U. Frisch,et al.  Back to the primordial Universe by a Monge-Ampère-Kantorovich optimization scheme , 2003, astro-ph/0301641.

[147]  Xu-Jia Wang,et al.  AFFINE MAXIMAL HYPERSURFACES , 2002 .

[148]  Klaus Böhmer,et al.  On Finite Element Methods for Fully Nonlinear Elliptic Equations of Second Order , 2008, SIAM J. Numer. Anal..

[149]  Shing-Tung Yau,et al.  On the regularity of the monge‐ampère equation det (∂2 u/∂xi ∂xj) = f(x, u) , 1977 .

[150]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[151]  Yin Zhang,et al.  Compressive sensing for 3d data processing tasks: applications, models and algorithms , 2011 .

[152]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[153]  Panagiotis E. Souganidis,et al.  A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs , 2008 .

[154]  Tao Tang,et al.  Moving Mesh Methods for Computational Fluid Dynamics , 2022 .

[155]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[156]  C. Villani Topics in Optimal Transportation , 2003 .

[157]  N. V. Krylov The Rate of Convergence of Finite-Difference Approximations for Bellman Equations with Lipschitz Coefficients , 2004 .

[158]  Gian Luca Delzanno,et al.  An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization , 2008, J. Comput. Phys..

[159]  Allen Tannenbaum,et al.  On the Monge-Kantorovich problem and image warping , 2003 .

[160]  Danny C. Sorensen,et al.  A quadratically constrained minimization problem arising from PDE of Monge–Ampère type , 2009, Numerical Algorithms.

[161]  Iain Smears,et al.  On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations , 2011, SIAM J. Numer. Anal..

[162]  Cao Yi Classical Solutions of Fully Nonlinear Elliptic Equations , 2010 .

[163]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[164]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[165]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..