Distances and cuts in planar graphs

We prove the following theorem. Let G = (V, E) be a planar bipartite graph, embedded in the euclidean plane. Let O and I be two of its faces. Then there exist pairwise edge-disjoint cuts C1, …, Ct so that for each two vertices v, w with v, w ϵ O of v, w ϵ I, the distance from v to w in G is equal to the number of cuts Cj separating v and w. This theorem is dual to a theorem of Okamura on plane multicommodity flows, in the same way as a theorem of Karzanov is dual to one of Lomonosov.

[1]  T. C. Hu Two-commodity cut-packing problem , 1973, Math. Program..

[2]  Haruko Okamura,et al.  Multicommodity flows in planar graphs , 1981, J. Comb. Theory, Ser. B.

[3]  P. Seymour On Odd Cuts and Plane Multicommodity Flows , 1981 .

[4]  Paul D. Seymour,et al.  Four-terminus flows , 1980, Networks.

[5]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[6]  B. Rothschild,et al.  MULTICOMMODITY NETWORK FLOWS. , 1969 .

[7]  Haruko Okamura,et al.  Multicommodity flows in graphs , 1983, Discret. Appl. Math..

[8]  Alexander Schrijver,et al.  On fractional multicommodity flows and distance functions , 1989, Discret. Math..

[9]  Paul D. Seymour,et al.  A two-commodity cut theorem , 1978, Discret. Math..

[10]  Refael Hassin,et al.  On multicommodity flows in planar graphs , 1984, Networks.

[11]  B. Rothschild,et al.  On Two Commodity Network Flows , 1966, Oper. Res..

[12]  Alexander V. Karzanov,et al.  Metrics and undirected cuts , 1985, Math. Program..

[13]  K. Menger Zur allgemeinen Kurventheorie , 1927 .