Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation

The numerical properties of a leap-frog pseudospectral scheme for the Schrodinger equation are analyzed. Stability, second-order accuracy in time, and spectral accuracy in space are discussed considering the linear Schrodinger equation with potential in a periodic setting. Further issues regarding phase error, gauge invariance, conservation properties, and commutation relations are addressed. Results of numerical experiments are reported to demonstrate the validity and limitations of the theoretical findings and for comparison with the well known Crank-Nicholson finite difference scheme.

[1]  Iitaka Solving the time-dependent Schrödinger equation numerically. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Ulrich Hohenester,et al.  Optical properties of semiconductor nanostructures: decoherence versus quantum control , 2004 .

[3]  Jean Bourgain,et al.  Global Solutions of Nonlinear Schrodinger Equations , 1999 .

[4]  Alejandro L. Garcia,et al.  Numerical Methods for Physics (2nd Edition) , 1999 .

[5]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[6]  A. Borzì,et al.  Optimal quantum control in nanostructures: Theory and application to a generic three-level system , 2002, cond-mat/0209513.

[7]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[8]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[9]  R. Wyatt,et al.  Dynamics of molecules and chemical reactions , 1996 .

[10]  Tony F. Chan,et al.  Stability analysis of difference schemes for variable coefficient Schro¨dinger type equations , 1987 .

[11]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[12]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[13]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[14]  J. M. Sanz-Serna,et al.  Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .

[15]  C. R. Stroud,et al.  General series solution for finite square-well energy levels for use in wave-packet studies , 2000 .

[16]  H. Saunders Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .

[17]  Willy Dörfler,et al.  A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation , 1996 .

[18]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[19]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[20]  Claude Leforestier,et al.  A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .

[21]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[22]  H. Chakraborty,et al.  Resonant neutralization of H ˛ near Cu surfaces: Effects of the surface symmetry and ion trajectory , 2004 .

[23]  Bernd Thaller,et al.  Visual Quantum Mechanics: Selected Topics with Computer-Generated Animations of Quantum-Mechanical Phenomena , 2000 .

[24]  Peter A. Markowich,et al.  A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[25]  Alejandro L. Garcia Numerical methods for physics , 1994 .

[26]  H. Tal-Ezer,et al.  An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .

[27]  R. Kosloff,et al.  A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .