Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation
暂无分享,去创建一个
[1] Iitaka. Solving the time-dependent Schrödinger equation numerically. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[2] Ulrich Hohenester,et al. Optical properties of semiconductor nanostructures: decoherence versus quantum control , 2004 .
[3] Jean Bourgain,et al. Global Solutions of Nonlinear Schrodinger Equations , 1999 .
[4] Alejandro L. Garcia,et al. Numerical Methods for Physics (2nd Edition) , 1999 .
[5] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[6] A. Borzì,et al. Optimal quantum control in nanostructures: Theory and application to a generic three-level system , 2002, cond-mat/0209513.
[7] Georgios Akrivis,et al. On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .
[8] R. Kosloff. Propagation Methods for Quantum Molecular Dynamics , 1994 .
[9] R. Wyatt,et al. Dynamics of molecules and chemical reactions , 1996 .
[10] Tony F. Chan,et al. Stability analysis of difference schemes for variable coefficient Schro¨dinger type equations , 1987 .
[11] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[12] D. Gottlieb,et al. Numerical analysis of spectral methods : theory and applications , 1977 .
[13] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[14] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[15] C. R. Stroud,et al. General series solution for finite square-well energy levels for use in wave-packet studies , 2000 .
[16] H. Saunders. Book Reviews : NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS K.-J. Bathe and E.L. Wilson Prentice-Hall, Inc, Englewood Cliffs, NJ , 1978 .
[17] Willy Dörfler,et al. A time- and spaceadaptive algorithm for the linear time-dependent Schrödinger equation , 1996 .
[18] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[19] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[20] Claude Leforestier,et al. A comparison of different propagation schemes for the time dependent Schro¨dinger equation , 1991 .
[21] H. Rabitz,et al. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.
[22] H. Chakraborty,et al. Resonant neutralization of H ˛ near Cu surfaces: Effects of the surface symmetry and ion trajectory , 2004 .
[23] Bernd Thaller,et al. Visual Quantum Mechanics: Selected Topics with Computer-Generated Animations of Quantum-Mechanical Phenomena , 2000 .
[24] Peter A. Markowich,et al. A Wigner-Measure Analysis of the Dufort-Frankel Scheme for the Schrödinger Equation , 2002, SIAM J. Numer. Anal..
[25] Alejandro L. Garcia. Numerical methods for physics , 1994 .
[26] H. Tal-Ezer,et al. An accurate and efficient scheme for propagating the time dependent Schrödinger equation , 1984 .
[27] R. Kosloff,et al. A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .