Boundary concentration of peak solutions for fractional Schr\"{o}dinger-Poisson system

The goal of this paper is to study the existence of peak solutions for the following fractional Schrödinger-Poisson system:    ε2s(−∆)su+ u+ φu = up, in Ω, (−∆)sφ = u2, in Ω, u = φ = 0, in RN \Ω, where s ∈ (0, 1), N > 2s, p ∈ (1, N+2s N−2s), Ω is a bounded domain in R N with Lipschitz boundary, and (−∆)s is the fractional Laplacian operator, ε is a small positive parameter. By using the Lyapunov-Schmidt reduction method, we construct a single peak solution (uε, φε) such that the peak of uε is in the domain but near the boundary. In order to characterize the boundary concentration of solutions, which concentrates at an approximate distance ε2/3 away from the boundary ∂Ω as ε tends to 0, some new estimates and analytic technique are used.

[1]  W. Ni,et al.  On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems , 1995 .

[2]  M. Pino,et al.  Semi-classical States for Nonlinear Schrödinger Equations , 1997 .

[3]  Juncheng Wei,et al.  Clustered spots in the FitzHugh–Nagumo system , 2005 .

[4]  Weiming Liu,et al.  Existence of positive solutions with peaks on a Clifford torus for a fractional nonlinear Schrödinger equation , 2019 .

[5]  M. Shubin Pseudodifferential Operators and Spectral Theory , 1987 .

[6]  E. N. Dancer,et al.  Solutions with interior and boundary peaks for the neumann problem of an elliptic system of fitzhugh-nagumo type , 2006 .

[7]  Jun Wang,et al.  Existence of multi-bump solutions for a semilinear Schrödinger–Poisson system , 2013 .

[8]  Juncheng Wei,et al.  Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory , 2000 .

[9]  E. N. Dancer,et al.  Multipeak Solutions for the Neumann Problem of an Elliptic System of Fitzhugh–Nagumo Type , 2005 .

[10]  Pietro d'Avenia,et al.  Infinitely many positive solutions for a Schrödinger-Poisson system , 2010, Appl. Math. Lett..

[11]  Juncheng Wei,et al.  Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem , 2006 .

[12]  Juncheng Wei,et al.  On Bound States Concentrating on Spheres for the Maxwell-Schrödinger Equation , 2005, SIAM J. Math. Anal..

[13]  A. Ambrosetti,et al.  A P ] 2 3 N ov 2 00 0 Multiplicity results for some nonlinear Schrödinger equations with potentials , 2000 .

[14]  Woocheol Choi,et al.  ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS WITH THE FRACTIONAL LAPLACIAN , 2013, 1308.4026.

[15]  Sign-changing solutions for some class of elliptic system , 2020 .

[16]  Guoyuan Chen,et al.  Concentration phenomenon for fractional nonlinear Schr\"{o}dinger equations , 2013, 1305.4426.

[17]  Vieri Benci,et al.  An eigenvalue problem for the Schrödinger-Maxwell equations , 1998 .

[18]  M. Pino,et al.  Multi-peak bound states for nonlinear Schrödinger equations , 1998 .

[19]  Guoyuan Chen Singularly perturbed Neumann problem for fractional Schrödinger equations , 2014, 1409.4556.

[20]  E. N. Dancer,et al.  Interior peak solutions for an elliptic system of FitzHugh–Nagumo type , 2006 .

[21]  Multi-peak positive solutions for a fractional nonlinear elliptic equation , 2015 .

[22]  A. Ambrosetti,et al.  Semiclassical States of Nonlinear Schrödinger Equations , 1997 .

[23]  David Ruiz,et al.  SEMICLASSICAL STATES FOR COUPLED SCHRÖDINGER–MAXWELL EQUATIONS: CONCENTRATION AROUND A SPHERE , 2005 .

[24]  M. Pino,et al.  Local mountain passes for semilinear elliptic problems in unbounded domains , 1996 .

[25]  Juncheng Wei,et al.  Boundary Concentration in Radial Solutions to a System of Semilinear Elliptic Equations , 2006 .

[26]  Miaomiao Niu,et al.  Multi-peak positive solutions for the fractional Schrödinger–Poisson system , 2016 .

[27]  Juncheng Wei On the Construction of Single-Peaked Solutions to a Singularly Perturbed Semilinear Dirichlet Problem , 1996 .

[28]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[29]  R. Frank Uniqueness of non-linear ground states for fractional Laplacians in R , 2013 .

[30]  Juncheng Wei,et al.  Concentrating standing waves for the fractional nonlinear Schr\"odinger equation , 2013, 1307.2301.

[31]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[32]  L. Jeanjean,et al.  Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities , 2004 .

[33]  D. Cao,et al.  Singularly Perturbed Methods for Nonlinear Elliptic Problems , 2021 .

[34]  Jianfu Yang,et al.  Nodal solutions for fractional Schrödinger-Poisson problems , 2019, Science China Mathematics.

[35]  Giusi Vaira,et al.  On Concentration of Positive Bound States for the Schrödinger-Poisson Problem with Potentials , 2008 .

[36]  Multi-Peak Positive Solutions for Nonlinear Fractional Schr\"{o}dinger Systems in ℝ N , 2016 .

[37]  Infinitely many positive solutions for the fractional Schrödinger–Poisson system , 2017 .

[38]  Juncheng Wei,et al.  Clustered solutions around harmonic centers to a coupled elliptic system , 2007 .

[39]  E. N. Dancer,et al.  Multipeak solutions for an elliptic system of Fitzhugh-Nagumo type , 2006 .

[40]  Juncheng Wei,et al.  Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem , 2005 .

[41]  Juncheng Wei,et al.  On the Role of Mean Curvature in Some Singularly Perturbed Neumann Problems , 1999, SIAM J. Math. Anal..

[42]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[43]  E. N. Dancer,et al.  Interior and Boundary Peak Solutions for a Mixed Boundary Value Problem , 1999 .

[44]  E. N. Dancer,et al.  On the superlinear Lazer-McKenna conjecture: the non-homogeneous case , 2007, Advances in Differential Equations.

[45]  Giusi Vaira,et al.  Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential , 2009, 0904.4105.

[46]  E. N. Dancer,et al.  MULTIPEAK SOLUTIONS FOR A SINGULARLY PERTURBED NEUMANN PROBLEM , 1999 .

[47]  G. Vaira,et al.  Non-radial sign-changing solutions for the Schrödinger–Poisson problem in the semiclassical limit , 2012, 1210.0728.

[48]  E. Valdinoci,et al.  Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum , 2014, 1403.4435.

[49]  B. Abdellaoui,et al.  On the fractional Lazer–McKenna conjecture with superlinear potential , 2018, Calculus of Variations and Partial Differential Equations.

[50]  Li Yanyan,et al.  On a singularly perturbed equation with neumann boundary condition , 1998 .

[51]  G. Burton Sobolev Spaces , 2013 .

[52]  E. N. Dancer,et al.  On the superlinear Lazer-McKenna conjecture , 2005 .

[53]  Multiple positive solutions for the nonlinear Schrödinger–Poisson system , 2017 .