A Semi-implicit Semi-Lagrangian Finite-Element Shallow-Water Ocean Model

Abstract The finite-element, semi-implicit, and semi-Lagrangian methods are combined together to solve the shallow-water equations using unstructured triangular meshes. Triangular finite elements are attractive for ocean modeling because of their flexibility for representing irregular boundaries and for local mesh refinement. A kriging interpolator is used for the semi-Lagrangian advection, leading to an accurate representation of the slow Rossby modes. The terms that govern fast gravitational oscillations are discretized using the semi-implicit scheme, thereby circumventing a severe time step restriction. A low-order velocity–surface-elevation finite-element basis-function pair is used for the spatial discretization. Results of test problems to simulate slowly propagating Rossby modes illustrate the promise of the proposed approach for ocean modeling.

[1]  Walter Munk,et al.  ON THE WIND-DRIVEN OCEAN CIRCULATION , 1950 .

[2]  Robert L. Lee,et al.  The cause and cure (!) of the spurious pressures generated by certain fem solutions of the incompressible Navier‐Stokes equations: Part 2 , 1981 .

[3]  Brady A. Elliott,et al.  Anticyclonic Rings in the Gulf of Mexico , 1982 .

[4]  C. Wunsch,et al.  How well does a 1/4° global circulation model simulate large-scale oceanic observations? , 1996 .

[5]  J. Bates,et al.  Multiply-Upstream, Semi-Lagrangian Advective Schemes: Analysis and Application to a Multi-Level Primitive Equation Model , 1982 .

[6]  J. R. Bates,et al.  Improving the Estimate of the Departure Point Position in a Two-Time Level Semi-Lagrangian and Semi-Implicit Scheme , 1987 .

[7]  John P. Boyd,et al.  Equatorial Solitary Waves. Part I: Rossby Solitons , 1980 .

[8]  Hong Ma,et al.  A spectral element basin model for the shallow water equations , 1993 .

[9]  William R. Holland,et al.  The Role of Mesoscale Eddies in the General Circulation of the Ocean—Numerical Experiments Using a Wind-Driven Quasi-Geostrophic Model , 1978 .

[10]  H. Hurlburt,et al.  A Numerical Study of Loop Current Intrusions and Eddy Shedding , 1980 .

[11]  Andrew Staniforth,et al.  An accurate interpolating scheme for semi-Lagrangian advection on an unstructured mesh for ocean modelling , 1997 .

[12]  A. Mcdonald Accuracy of Multiply-Upstream, Semi-Lagrangian Advective Schemes , 1984 .

[13]  A. D. Kirwan,et al.  Genesis of a Gulf of Mexico ring as determined from kinematic analyses , 1987 .

[14]  J. Holton Geophysical fluid dynamics. , 1983, Science.

[15]  A. Kirwan,et al.  Observed and simulated kinematic properties of Loop Current rings , 1988 .

[16]  Clive Temperton,et al.  An Efficient Two‐Time‐Level Semi‐Lagrangian Semi‐Implicit Integration Scheme , 1987 .

[17]  H. Stommel,et al.  The westward intensification of wind‐driven ocean currents , 1948 .

[18]  H. Sverdrup Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Staniforth,et al.  Reply to comments on and addenda to “some properties and comparative performance of the semi‐lagrangian method of Robert in the solution of the advection‐diffusion equation” , 1985 .

[20]  R. Chervin,et al.  A simulation of the global ocean circulation with resolved eddies , 1988 .

[21]  John P. Boyd,et al.  Equatorial Solitary Waves. Part 3: Westward-Traveling Modons , 1985 .

[22]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[23]  A. Robert,et al.  An Implicit Time Integration Scheme for Baroclinic Models of the Atmosphere , 1972 .

[24]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[25]  James F. Doyle,et al.  The Spectral Element Method , 2020, Wave Propagation in Structures.

[26]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[27]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952 .

[28]  Andrew Staniforth,et al.  Finite Elements for Shallow-Water Equation Ocean Models , 1998 .

[29]  D. Purnell Solution of the Advective Equation by Upstream Interpolation with a Cubic Spline , 1976 .

[30]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[31]  A. Robert,et al.  A semi-Lagrangian and semi-implicit numerical integration scheme for multilevel atmospheric models , 1985 .

[32]  Saulo R. M. Barros,et al.  Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver , 1990 .

[33]  J. S. Sawyer A semi-Lagrangian method of solving the vorticity advection equation , 1963 .

[34]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[35]  J. Morrison,et al.  On the circulation of the western Gulf of Mexico with observations from April 1978 , 1981 .

[36]  Eric Blayo,et al.  A Comparison of Two Numerical Methods for Integrating a Quasi-geostrophic Multilayer Model of Ocean Circulations , 1994 .

[37]  A. Wiin-Nielsen,et al.  On the Application of Trajectory Methods in Numerical Forecasting , 1959 .

[38]  W. R. Holland Ocean tracer distributions: Part I. A preliminary numerical experiment , 1971 .

[39]  A. Robert A Semi-Lagrangian and Semi-Implicit Numerical Integration Scheme for the Primitive Meteorological Equations , 1982 .

[40]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[41]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[42]  W. R. Holland,et al.  A Numerical Calculation of the Circulation in the North Atlantic Ocean , 1972 .

[43]  L. Mysak,et al.  Waves in the ocean , 1978 .

[44]  G. Grotkop Finite element analysis of long-period water waves , 1973 .

[45]  Janusz A. Pudykiewicz,et al.  Preliminary results From a partial LRTAP model based on an existing meteorological forecast model , 1985 .

[46]  A. E. Gill,et al.  Effects of geometry on the circulation of a three-dimensional southern-hemisphere ocean model , 1971 .

[47]  W. R. Holland,et al.  On the Generation of Mesoscale Eddies and their Contribution to the OceanicGeneral Circulation. II. A Parameter Study , 1975 .

[48]  Ragnar Fjørtoft,et al.  On a Numerical Method of Integrating the Barotropic Vorticity Equation , 1952, Tellus A: Dynamic Meteorology and Oceanography.

[49]  George J. Fix,et al.  Finite Element Models for Ocean Circulation Problems , 1975 .

[50]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[51]  K. Bryan,et al.  A numerical investigation of the oceanic general circulation , 1967 .

[52]  K. Bryan,et al.  A Numerical Investigation of a Nonlinear Model of a Wind-Driven Ocean , 1963 .

[53]  A Quantitative Analysis of the Dissipation Inherent in Semi-Lagrangian Advection , 1988 .

[54]  Robert M. Chervin,et al.  An Ocean Modelling System for Supercomputer Architectures of the 1990s , 1990 .

[55]  William R. Holland,et al.  On the Generation of Mesoscale Eddies and their Contribution to the OceanicGeneral Circulation. I. A Preliminary Numerical Experiment , 1975 .

[56]  P. Rasch,et al.  Computational aspects of moisture transport in global models of the atmosphere , 1990 .

[57]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[58]  Janusz A. Pudykiewicz,et al.  Some properties and comparative performance of the semi‐Lagrangian method of Robert in the solution of the advection‐diffusion equation , 1984 .

[59]  Dale B. Haidvogel,et al.  The accuracy, efficiency, and stability of three numerical models with application to open ocean problems , 1980 .

[60]  M. Cox,et al.  A mathematical model of the Indian Ocean , 1970 .

[61]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[62]  Philip M. Gresho,et al.  The implementation of normal and/or tangential boundary conditions in finite element codes for incompressible fluid flow , 1982 .

[63]  William G. Gray,et al.  Progress in Surface Water Modeling , 1991 .

[64]  F. Vukovich,et al.  Aspects of warm rings in the Gulf of Mexico , 1986 .

[65]  D. A. Brooks Current and hydrographic variability in the northwestern Gulf of Mexico , 1984 .

[66]  C. Provost An Application of Finite Element Methods for Modelling Wind Driven Circulations in a Stratified Ocean , 1984 .