Geometric Computations on Indecisive and Uncertain Points

We study computing geometric problems on uncertain points. An uncertain point is a point that does not have a fixed location, but rather is described by a probability distribution. When these probability distributions are restricted to a finite number of locations, the points are called indecisive points. In particular, we focus on geometric shape-fitting problems and on building compact distributions to describe how the solutions to these problems vary with respect to the uncertainty in the points. Our main results are: (1) a simple and efficient randomized approximation algorithm for calculating the distribution of any statistic on uncertain data sets; (2) a polynomial, deterministic and exact algorithm for computing the distribution of answers for any LP-type problem on an indecisive point set; and (3) the development of shape inclusion probability (SIP) functions which captures the ambient distribution of shapes fit to uncertain or indecisive point sets and are admissible to the two algorithmic constructions.

[1]  Yufei Tao,et al.  Indexing Multi-Dimensional Uncertain Data with Arbitrary Probability Density Functions , 2005, VLDB.

[2]  Maarten Löffler,et al.  Largest bounding box, smallest diameter, and related problems on imprecise points , 2007, Comput. Geom..

[3]  Pankaj K. Agarwal,et al.  Practical Methods for Shape Fitting and Kinetic Data Structures using Coresets , 2004, SCG '04.

[4]  Leo Joskowicz,et al.  Uncertainty envelopes , 2005, EuroCG.

[5]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[6]  Dmitri V. Kalashnikov,et al.  Index for fast retrieval of uncertain spatial point data , 2006, GIS '06.

[7]  Pankaj K. Agarwal,et al.  Practical methods for shape fitting and kinetic data structures using core sets , 2004, Symposium on Computational Geometry.

[8]  J. Matousek,et al.  Geometric Discrepancy: An Illustrated Guide , 2009 .

[9]  Jirí Matousek,et al.  Discrepancy and approximations for bounded VC-dimension , 1993, Comb..

[10]  Chi-Yin Chow,et al.  Probabilistic Verifiers: Evaluating Constrained Nearest-Neighbor Queries over Uncertain Data , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[11]  Krishnendu Chakrabarty,et al.  Uncertainty-aware and coverage-oriented deployment for sensor networks , 2004, J. Parallel Distributed Comput..

[12]  Timothy M. Chan,et al.  Stochastic minimum spanning trees in euclidean spaces , 2011, SoCG '11.

[13]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[14]  Heinrich Kruger Basic Measures for Imprecise Point Sets in R d , 2008 .

[15]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[16]  Graham Cormode,et al.  Approximation algorithms for clustering uncertain data , 2008, PODS.

[17]  B. Donald,et al.  Structure determination of symmetric homo‐oligomers by a complete search of symmetry configuration space, using NMR restraints and van der Waals packing , 2006, Proteins.

[18]  David Haussler,et al.  Epsilon-nets and simplex range queries , 1986, SCG '86.

[19]  Kenneth L. Clarkson,et al.  Smaller core-sets for balls , 2003, SODA '03.

[20]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[21]  Ramakrishnan Srikant,et al.  Privacy-preserving data mining , 2000, SIGMOD '00.

[22]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[23]  J. M. Phillips Algorithms for ε-approximations of Terrains ? , 2008 .

[24]  Maarten Löffler,et al.  Delaunay triangulations of imprecise pointsin linear time after preprocessing , 2008, SCG '08.

[25]  Petteri Nurmi,et al.  Moving Object Databases , 2008, Encyclopedia of GIS.

[26]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[27]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[28]  Ronald Parr,et al.  DP-SLAM 2.0 , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[29]  Jinbo Bi,et al.  Support Vector Classification with Input Data Uncertainty , 2004, NIPS.

[30]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[31]  Pankaj K. Agarwal,et al.  Approximation Algorithms for k-Line Center , 2002, ESA.

[32]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[33]  Sunil Prabhakar,et al.  Evaluating probabilistic queries over imprecise data , 2003, SIGMOD '03.

[34]  Shashi Shekhar,et al.  Spatial Databases: A Tour , 2003 .

[35]  Graham Cormode,et al.  Histograms and Wavelets on Probabilistic Data , 2010, IEEE Trans. Knowl. Data Eng..

[36]  Donald B. Johnson,et al.  Generalized Selection and Ranking: Sorted Matrices , 1984, SIAM J. Comput..

[37]  Nikhil Bansal,et al.  Constructive Algorithms for Discrepancy Minimization , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[38]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[39]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.

[40]  Wei Hong,et al.  Model-Driven Data Acquisition in Sensor Networks , 2004, VLDB.

[41]  Shachar Lovett,et al.  Constructive Discrepancy Minimization by Walking on the Edges , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[42]  Pankaj K. Agarwal,et al.  Approximating extent measures of points , 2004, JACM.

[43]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .

[44]  Sariel Har-Peled On complexity, sampling, and -nets and -samples , 2011 .

[45]  Martin Fürer Faster integer multiplication , 2007, STOC '07.

[46]  Bernd Gärtner,et al.  Fast and Robust Smallest Enclosing Balls , 1999, ESA.

[47]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[48]  Takayuki Nagai,et al.  Tight Error Bounds of Geometric Problems on Convex Objects with Imprecise Coordinates , 2000, JCDCG.

[49]  J. Kiefer,et al.  On the deviations of the empiric distribution function of vector chance variables , 1958 .

[50]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[51]  Philip S. Yu,et al.  Privacy-Preserving Data Mining - Models and Algorithms , 2008, Advances in Database Systems.

[52]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[53]  Jack Snoeyink,et al.  Almost-Delaunay simplices: nearest neighbor relations for imprecise points , 2004, SODA '04.

[54]  Feifei Li,et al.  Semantics of Ranking Queries for Probabilistic Data and Expected Ranks , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[55]  Pankaj K. Agarwal,et al.  Small and stable descriptors of distributions for geometric statistical problems , 2009 .

[56]  李幼升,et al.  Ph , 1989 .

[57]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[58]  Timothy M. Chan Faster core-set constructions and data stream algorithms in fixed dimensions , 2004, SCG '04.

[59]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB journal.

[60]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[61]  Parag Agrawal,et al.  Trio: a system for data, uncertainty, and lineage , 2006, VLDB.

[62]  Joseph S. B. Mitchell,et al.  Triangulating input-constrained planar point sets , 2008, Inf. Process. Lett..