Method for chromatic error compensation in digital color holographic imaging.

This paper proposes an all-numerical robust method to compensate for the chromatic aberrations induced by the optical elements in digital color holographic imaging. It combines a zero-padding algorithm and a convolution approach with adjustable magnification, using a single recording of a reference rectangular grid. Experimental results confirm and validate the proposed approach.

[1]  Pascal Picart,et al.  Analysis and adaptation of convolution algorithms to reconstruct extended objects in digital holography. , 2013, Applied optics.

[2]  Marcin Bieda,et al.  Fiber-based real-time color digital in-line holography. , 2013, Applied optics.

[3]  J. Garcia-Sucerquia Color lensless digital holographic microscopy with micrometer resolution. , 2012, Optics letters.

[4]  Zu-jie Peng,et al.  Spatial bandwidth extended reconstruction for digital color Fresnel holograms. , 2009, Optics express.

[5]  Jorge Garcia-Sucerquia,et al.  Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform. , 2010, Applied optics.

[6]  Pascal Picart,et al.  Real-time three-sensitivity measurements based on three-color digital Fresnel holographic interferometry. , 2010, Optics letters.

[7]  O. Matoba,et al.  Four-Wavelength Color Digital Holography , 2012, Journal of Display Technology.

[8]  Ulf Schnars,et al.  Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum , 1996 .

[9]  Thomas M. Kreis,et al.  Frequency analysis of digital holography with reconstruction by convolution , 2002 .

[10]  Domenico Alfieri,et al.  Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms. , 2004, Optics letters.

[11]  Pascal Picart,et al.  Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. , 2009, Optics letters.

[12]  Bahram Javidi,et al.  Three-dimensional color object visualization and recognition using multi-wavelength computational holography. , 2007, Optics express.

[13]  Myung K. Kim Full color natural light holographic camera. , 2013, Optics express.

[14]  Osamu Matoba,et al.  Improvement of color reproduction in color digital holography by using spectral estimation technique. , 2011, Applied optics.

[15]  W. Osten,et al.  The determination of material parameters of microcomponents using digital holography , 2001 .

[16]  Thomas M. Kreis,et al.  Digital holographic recording and reconstruction of large scale objects for metrology and display , 2010 .

[17]  Etienne Cuche,et al.  Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  P. Picart,et al.  General theoretical formulation of image formation in digital Fresnel holography. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  D. Alfieri,et al.  Full Color 3-D Imaging by Digital Holography and Removal of Chromatic Aberrations , 2008, Journal of Display Technology.

[20]  Ichirou Yamaguchi,et al.  Algorithm for reconstruction of digital holograms with adjustable magnification. , 2004, Optics letters.

[21]  J. H. Massig,et al.  Compensation of lens aberrations in digital holography. , 2000, Optics letters.

[22]  Pascal Picart,et al.  Use of digital color holography for crack investigation in electronic components , 2011 .

[23]  C. Mann,et al.  Quantitative phase imaging by three-wavelength digital holography. , 2008, Optics express.

[24]  A Finizio,et al.  Recovering correct phase information in multiwavelength digital holographic microscopy by compensation for chromatic aberrations. , 2005, Optics letters.