An anti-CRISPR protein disables type V Cas12a by acetylation

Phages use anti-CRISPR proteins to deactivate the CRISPR–Cas system. The mechanisms for the inhibition of type I and type II systems by anti-CRISPRs have been elucidated. However, it has remained unknown how the type V CRISPR–Cas12a (Cpf1) system is inhibited by anti-CRISPRs. Here we identify the anti-CRISPR protein AcrVA5 and report the mechanisms by which it inhibits CRISPR–Cas12a. Our structural and biochemical data show that AcrVA5 functions as an acetyltransferase to modify Moraxella bovoculi (Mb) Cas12a at Lys635, a residue that is required for recognition of the protospacer-adjacent motif. The AcrVA5-mediated modification of MbCas12a results in complete loss of double-stranded DNA (dsDNA)-cleavage activity. In contrast, the Lys635Arg mutation renders MbCas12a completely insensitive to inhibition by AcrVA5. A cryo-EM structure of the AcrVA5-acetylated MbCas12a reveals that Lys635 acetylation provides sufficient steric hindrance to prevent dsDNA substrates from binding to the Cas protein. Our study reveals an unprecedented mechanism of CRISPR–Cas inhibition and suggests an evolutionary arms race between phages and bacteria.Zhiwei Huang and colleagues report structural and biochemical data showing that the anti-CRISPR protein AcrVA5 functions as an acetyltransferase, modifying MbCas12a at Lys635, a residue required for PAM recognition. Acetylation of Lys635 creates a steric clash that prevents binding of target DNA.

[1]  Alan R. Davidson,et al.  Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system , 2012, Nature.

[2]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[3]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[4]  Alexis Rohou,et al.  cisTEM: User-friendly software for single-particle image processing , 2017, bioRxiv.

[5]  R. Gunaratne,et al.  Patient Dissatisfaction Following Total Knee Arthroplasty: A Systematic Review of the Literature. , 2017, The Journal of arthroplasty.

[6]  Kira S. Makarova,et al.  Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA , 2016, Cell.

[7]  A. Regev,et al.  Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System , 2015, Cell.

[8]  Liisa Holm,et al.  Dali server update , 2016, Nucleic Acids Res..

[9]  Alan R. Davidson,et al.  Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins , 2015, Nature.

[10]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[11]  J. Frank,et al.  SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs , 2008, Nature Protocols.

[12]  E. M. DeGennaro,et al.  Multiplex gene editing by CRISPR-Cpf1 through autonomous processing of a single crRNA array , 2016, Nature Biotechnology.

[13]  Zhi Xiong,et al.  Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein , 2017, Nature.

[14]  David S. Wishart,et al.  PHASTER: a better, faster version of the PHAST phage search tool , 2016, Nucleic Acids Res..

[15]  S. Hovmöller,et al.  Conformations of amino acids in proteins. , 2002, Acta crystallographica. Section D, Biological crystallography.

[16]  Nevan J. Krogan,et al.  Inhibition of CRISPR-Cas9 with Bacteriophage Proteins , 2017, Cell.

[17]  J. Keith Joung,et al.  Discovery of widespread type I and type V CRISPR-Cas inhibitors , 2018, Science.

[18]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[19]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[20]  A. Roujeinikova,et al.  Structure and Functional Diversity of GCN5-Related N-Acetyltransferases (GNAT) , 2016, International journal of molecular sciences.

[21]  Rotem Sorek,et al.  CRISPR-mediated adaptive immune systems in bacteria and archaea. , 2013, Annual review of biochemistry.

[22]  G. Lander,et al.  Structure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complex , 2017, Cell.

[23]  Fan Zhang,et al.  CRISPRminer is a knowledge base for exploring CRISPR-Cas systems in microbe and phage interactions , 2018, Communications Biology.

[24]  Daniel Gautheret,et al.  CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins , 2018, Nucleic Acids Res..

[25]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[26]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[27]  George A. O'Toole,et al.  Friendly Fire : Biological Functions and Consequences of Chromosomal-Targeting by 1 CRISPR-Cas Systems 2 , 2016 .

[28]  Luciano A. Marraffini,et al.  CRISPR-Cas immunity in prokaryotes , 2015, Nature.

[29]  Yan Zhang,et al.  Naturally Occurring Off-Switches for CRISPR-Cas9 , 2016, Cell.

[30]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[31]  Martin J. Aryee,et al.  Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells , 2016, Nature Biotechnology.

[32]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[33]  K. Maxwell,et al.  Phage-Encoded Anti-CRISPR Defenses. , 2018, Annual review of genetics.

[34]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[35]  Hui Yang,et al.  Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. , 2017, Molecular cell.

[36]  A. Davidson,et al.  The solution structure of an anti-CRISPR protein , 2016, Nature Communications.

[37]  Tao Zhang,et al.  A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants , 2017, Nature Plants.

[38]  Kira S. Makarova,et al.  The CRISPR Spacer Space Is Dominated by Sequences from Species-Specific Mobilomes , 2017, mBio.

[39]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[40]  Xueli Zhang,et al.  Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique , 2018, Biotechnology for Biofuels.

[41]  Sita J. Saunders,et al.  An updated evolutionary classification of CRISPR–Cas systems , 2015, Nature Reviews Microbiology.

[42]  Robert C. Edgar,et al.  PILER-CR: Fast and accurate identification of CRISPR repeats , 2007, BMC Bioinformatics.

[43]  Jennifer A. Doudna,et al.  A Broad-Spectrum Inhibitor of CRISPR-Cas9 , 2017, Cell.

[44]  Robert Langer,et al.  CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling , 2014, Cell.

[45]  Kyle E. Watters,et al.  Systematic discovery of natural CRISPR-Cas12a inhibitors , 2018, Science.

[46]  Xiang Ding,et al.  CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli. , 2018, Biotechnology journal.

[47]  Stan J. J. Brouns,et al.  The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. , 2012, Annual review of genetics.

[48]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[49]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[50]  R. Marmorstein,et al.  The molecular basis for histone H4- and H2A-specific amino-terminal acetylation by NatD. , 2015, Structure.

[51]  Tao Zhang,et al.  A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants , 2017, Nature Plants.

[52]  H. Nishimasu,et al.  Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1. , 2017, Molecular cell.

[53]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.