Experimental indications for Markov properties of small scale turbulence

We present a stochastic analysis of a data set consisting of 1:25 10 7 samples of the local velocity measured in the turbulent region of a round free jet. We nd evidence that the statistics of the longitudinal velocity increment v(r) can be described as a Markov process. This new approach to characterize small-scale turbulence leads to a Fokker{Planck equation for the r-evolution of the probability density function (p.d.f.) of v(r). This equation for p(v;r) is completely determined by two coecients D1(v;r) and D2(v;r) (drift and diusion coecient, respectively). It is shown how these coecients can be estimated directly from the experimental data without using any assumptions or models for the underlying stochastic process. The solutions of the resulting Fokker{Planck equation are compared with experimentally determined probability density functions. It is shown that the Fokker{Planck equation describes the measured p.d.f.(s) correctly, including intermittency eects. Furthermore, knowledge of the Fokker{Planck equation also allows the joint probability density of N increments on N dierent scales p(v1;r1;:::;vN;rN) to be determined.

[1]  Joachim Peinke,et al.  Experimental indications for Markov properties of small-scale turbulence , 2001, Journal of Fluid Mechanics.

[2]  Jan Raethjen,et al.  Extracting model equations from experimental data , 2000 .

[3]  M. Greiner,et al.  The Markovian metamorphosis of a simple turbulent cascade model , 2000, nlin/0003044.

[4]  Davoudi,et al.  Multiscale correlation functions in strong turbulence , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  J. Peinke,et al.  How to quantify deterministic and random influences on the statistics of the foreign exchange market , 1999, Physical review letters.

[6]  B. Dubrulle Affine turbulence , 2000 .

[7]  Rudolf Friedrich,et al.  Uniform Statistical Description of the Transition between Near and Far Field Turbulence in a Wake Flow , 1999 .

[8]  Pierre-Olivier Amblard,et al.  On the cascade in fully developed turbulence. The propagator approach versus the Markovian description , 1999 .

[9]  M. R. Rahimi Tabar,et al.  Theoretical Model for the Kramers-Moyal Description of Turbulence Cascades , 1999, cond-mat/9907063.

[10]  A new method to characterize inhomogeneous turbulence , 1999 .

[11]  Javier Jiménez,et al.  On the characteristics of vortex filaments in isotropic turbulence , 1998, Journal of Fluid Mechanics.

[12]  P. Marcq,et al.  A Langevin equation for the energy cascade in fully developed turbulence , 1998, chao-dyn/9808021.

[13]  A. Donkov,et al.  The Exact Solution of one Fokker-Planck Type Equation used by R. Friedrich and J. Peinke in the Stochastic Model of a Turbulent Cascade , 1998, math-ph/9807010.

[14]  T. Kambe,et al.  Probability Density Function of Longitudinal Velocity Increment in Homogeneous Turbulence. , 1998, chao-dyn/9803010.

[15]  J. Peinke,et al.  A note on three-point statistics of velocity increments in turbulence , 1998 .

[16]  V. Yakhot PROBABILITY DENSITY AND SCALING EXPONENTS OF THE MOMENTS OF LONGITUDINAL VELOCITY DIFFERENCE IN STRONG TURBULENCE , 1997, chao-dyn/9708016.

[17]  Joachim Peinke,et al.  Disordered structures analyzed by the theory of Markov processes , 1998 .

[18]  Joachim Peinke,et al.  FOKKER-PLANCK EQUATION FOR THE ENERGY CASCADE IN TURBULENCE , 1997 .

[19]  Statistical Laws of Random Strained Vortices in Turbulence , 1997 .

[20]  J. Peinke,et al.  Statistical properties of a turbulent cascade , 1997 .

[21]  J. Peinke,et al.  Description of a Turbulent Cascade by a Fokker-Planck Equation , 1997 .

[22]  A. Fairhall,et al.  Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests , 1997, chao-dyn/9701014.

[23]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[24]  Limitations of random multipliers in describing turbulent energy dissipation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  J. Peinke,et al.  Turbulent cascades in foreign exchange markets , 1996, Nature.

[26]  Roberto Benzi,et al.  Structure functions in turbulence, in various flow configurations, at Reynolds number between 30 and 5000, using extended self-similarity , 1996 .

[27]  J. Peinke,et al.  Multiplicative process in turbulent velocity statistics : A simplified analysis , 1996 .

[28]  I. Procaccia,et al.  Fusion rules in turbulent systems with flux equilibrium. , 1995, Physical review letters.

[29]  Novikov,et al.  Self-similarity and probability distributions of turbulent intermittency. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Polyakov Turbulence without pressure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Antoine Naert Turbulence dans un jet d'hélium gazeux à basse température , 1995 .

[32]  Peinke,et al.  Transition toward developed turbulence. , 1994, Physical review letters.

[33]  E. Novikov,et al.  On Markov modelling of turbulence , 1994, Journal of Fluid Mechanics.

[34]  Raffaele Tripiccione,et al.  Extended self-similarity in the dissipation range of fully developed turbulence , 1993 .

[35]  Joachim Peinke,et al.  On a Fractal and an Experimental Approach to Turbulence , 1993, Fractals in the Natural and Applied Sciences.

[36]  L. Löfdahl,et al.  The plane wake of a cylinder: Measurements and inferences on turbulence modeling , 1993 .

[37]  J Peinke,et al.  On chaos, fractals and turbulence , 1993 .

[38]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[39]  Y. Gagne,et al.  Velocity probability density functions of high Reynolds number turbulence , 1990 .

[40]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[41]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[42]  A. Obukhov Some specific features of atmospheric turbulence , 1962 .

[43]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.