An investigation of the fracture and fatigue crack growth behavior of forged damage-tolerant niobium aluminide intermetallics

[1]  B. Bewlay,et al.  Refractory metal-intermetallic in-situ composites for aircraft engines , 1997 .

[2]  W. Soboyejo,et al.  An investigation of the effects of stress ratio and crack closure on the micromechanisms of fatigue crack growth in Ti-6Al-4V , 1997 .

[3]  W. Soboyejo,et al.  Effects of alloying on crack-tip deformation and shielding in gamma-based titanium aluminides , 1997 .

[4]  W. Soboyejo,et al.  Fatigue Crack Growth Mechanisms in a Forged IN 718 Nickel-Based Superalloy , 1997 .

[5]  David L. Davidson,et al.  The effects on fracture toughness of ductile-phase composition and morphology in Nb-Cr-Ti and Nb-Siin situ composites , 1996 .

[6]  Kwai S. Chan,et al.  The fracture toughness of niobium-based,in situ composites , 1996 .

[7]  W. Soboyejo,et al.  Effects of reinforcement morphology on the fatigue and fracture behavior of MoSi2/Nb composites , 1996 .

[8]  Charles Annis,et al.  An assessment of the role of near-threshold crack growth in high-cycle-fatigue life prediction of aerospace titanium alloys under turbine engine spectra , 1996 .

[9]  H. Fraser,et al.  The Stability of B2 Compounds in Ti-Modified Nb-Al Alloys , 1992 .

[10]  S. Suresh Fatigue of materials , 1991 .

[11]  S. Suresh,et al.  Theory and experiments of fracture in cyclic compression: Single phase ceramics, transforming ceramics and ceramic composites , 1988 .

[12]  Ieee Antennas,et al.  1987 international symposium digest : Antennas and propagation : Virginia Polytechnic Institute and State University, Blacksburg, VA, June 15-19, 1987 , 1987 .

[13]  A. Berndt Binary phase diagrams , 1969 .