How to Issue a Central Bank Digital Currency

With the emergence of Bitcoin and recently proposed stablecoins from BigTechs, such as Diem (formerly Libra), central banks face growing competition from private actors offering their own digital alternative to physical cash. We do not address the normative question whether a central bank should issue a central bank digital currency (CBDC) or not. Instead, we contribute to the current research debate by showing how a central bank could do so, if desired. We propose a token-based system without distributed ledger technology and show how earlier-deployed, software-only electronic cash can be improved upon to preserve transaction privacy, meet regulatory requirements in a compelling way, and offer a level of quantum-resistant protection against systemic privacy risk. Neither monetary policy nor financial stability would be materially affected because a CBDC with this design would replicate physical cash rather than bank deposits. JEL: E42, E51, E52, E58, G2

[1]  Stefan Katzenbeisser,et al.  PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon , 2012, CHES.

[2]  Florian Dold,et al.  The GNU Taler system: practical and provably secure electronic payments. (Le système GNU Taler: Paiements électroniques pratiques et sécurisés) , 2019 .

[3]  Jeremiah Smith Bank for International Settlements , 1929, International Organization.

[4]  Rodney Garratt,et al.  Project Jasper : Are Distributed Wholesale Payment Systems Feasible Yet ? , 2017 .

[5]  Richard M. Stallman,et al.  The GNU manifesto , 1990 .

[6]  Miles S. Kimball,et al.  Enabling Deep Negative Rates to Fight Recessions: A Guide , 2019, IMF Working Papers.

[7]  Jens H. E. Christensen,et al.  The Safety Premium of Safe Assets , 2019 .

[8]  George Danezis,et al.  Centrally Banked Cryptocurrencies , 2015, NDSS.

[9]  William Bülow,et al.  Nothing to Hide : The False Tradeoff between Privacy and Security by Daniel J. Solove , 2012 .

[10]  Walter Distaso,et al.  GRETL: Econometric software for the GNU generation , 2003 .

[11]  Giovanni Dell'Ariccia,et al.  Designing Central Bank Digital Currencies , 2019, Journal of Monetary Economics.

[12]  T. Adrian,et al.  The Rise of Digital Money , 2019, Annual Review of Financial Economics.

[13]  Sandra Eickmeier,et al.  Financial Shocks and Inflation Dynamics , 2016, Macroeconomic Dynamics.

[14]  Exploring anonymity in central bank digital currencies , 2019 .

[15]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[16]  Georg Fuchsbauer,et al.  Transferable Constant-Size Fair E-Cash , 2009, IACR Cryptol. ePrint Arch..

[17]  Rainer Böhme,et al.  The Technology of Retail Central Bank Digital Currency , 2020 .

[18]  Fan Zhang,et al.  Design Choices for Central Bank Digital Currency: Policy and Technical Considerations , 2020, SSRN Electronic Journal.

[19]  R. Nyffeler,et al.  Exploring BIS credit-to-GDP gap critiques: the Swiss case , 2021, Swiss Journal of Economics and Statistics.

[20]  Yannick Stucki,et al.  A neoclassical perspective on Switzerland’s 1990s stagnation , 2018, Swiss Journal of Economics and Statistics.

[21]  U. Bindseil Tiered CBDC and the Financial System , 2020, SSRN Electronic Journal.

[22]  Tommaso Mancini Griffoli,et al.  Casting Light on Central Bank Digital Currencies , 2018 .

[23]  Rodney Garratt,et al.  Token- or Account-Based? A Digital Currency Can Be Both , 2020 .

[24]  Amos Fiat,et al.  Untraceable Electronic Cash , 1990, CRYPTO.

[25]  Markus K. Brunnermeier,et al.  On the Equivalence of Private and Public Money , 2019, Journal of Monetary Economics.

[26]  Michael Kumhof,et al.  Central Bank Digital Currencies - Design Principles and Balance Sheet Implications , 2018 .

[27]  Avishai Wool,et al.  Cache-Attacks on the ARM TrustZone implementations of AES-256 and AES-256-GCM via GPU-based analysis , 2018, IACR Cryptol. ePrint Arch..

[28]  C. Kahn,et al.  Why pay? An introduction to payments economics , 2009 .

[29]  Riccardo Lucchetti,et al.  The GNU|Linux platform and freedom respecting software for economists , 2008 .

[30]  H. Barger The General Theory of Employment, Interest and Money , 1936, Nature.

[31]  Christoph O. Meyer,et al.  COVID-19 and regional shifts in Swiss retail payments , 2020, Swiss journal of economics and statistics.

[32]  Morten L. Bech,et al.  Central Bank Cryptocurrencies , 2017 .

[33]  T. Lustenberger,et al.  Does Communication Influence Executives’ Opinion of Central Bank Policy? , 2020, SSRN Electronic Journal.

[34]  Andrew T. Levin,et al.  Central Bank Digital Currency and the Future of Monetary Policy , 2017 .

[35]  W. Buiter,et al.  Overcoming the Zero Bound on Nominal Interest Rates with Negative Interest on Currency: Gesell's Solution , 2003 .

[36]  Tanja Lange,et al.  High-speed high-security signatures , 2011, Journal of Cryptographic Engineering.

[37]  Jan Camenisch,et al.  Compact E-Cash , 2005, EUROCRYPT.

[38]  William Roberds,et al.  WORKING PAPER SERIESFEDERAL RESERVE BANK of ATLANTA WORKING PAPER SERIES Money Is Privacy , 2004 .

[39]  T. Alves,et al.  TrustZone : Integrated Hardware and Software Security , 2004 .

[40]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[41]  Bart Jacobs,et al.  Dismantling MIFARE Classic , 2008, ESORICS.

[42]  Arvind Narayanan,et al.  Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction , 2016 .

[43]  Tanai Khiaonarong,et al.  A Survey of Research on Retail Central Bank Digital Currency , 2020, IMF Working Papers.

[44]  Codruta Boar,et al.  Impending Arrival – A Sequel to the Survey on Central Bank Digital Currency , 2020 .

[45]  R. Lyons,et al.  What Keeps Stablecoins Stable? , 2019, SSRN Electronic Journal.

[46]  Christof Paar,et al.  All You Can Eat or Breaking a Real-World Contactless Payment System , 2010, Financial Cryptography.

[47]  A. Tola,et al.  Deviations from covered interest rate parity and capital outflows: The case of Switzerland , 2020 .

[48]  Taking stock: ongoing retail CBDC projects , 2020 .

[49]  David Chaum,et al.  Blind Signatures for Untraceable Payments , 1982, CRYPTO.

[50]  Sébastien Canard,et al.  Divisible E-Cash Systems Can Be Truly Anonymous , 2007, EUROCRYPT.

[51]  M. Goodfriend Overcoming the Zero Bound on Interest Rate Policy , 2000 .

[52]  Aleksander Berentsen,et al.  The Case for Central Bank Electronic Money and the Non-Case for Central Bank Cryptocurrencies , 2018 .

[53]  Dan Boneh,et al.  TWENTY YEARS OF ATTACKS ON THE RSA CRYPTOSYSTEM , 1999 .

[54]  Simon Beyeler,et al.  Shall We Twist , 2018 .

[55]  Satoshi Nakamoto Bitcoin : A Peer-to-Peer Electronic Cash System , 2009 .

[56]  Tatsuaki Okamoto,et al.  An Efficient Divisible Electronic Cash Scheme , 1995, CRYPTO.

[57]  Chae Hoon Lim,et al.  A Key Recovery Attack on Discrete Log-based Schemes Using a Prime Order Subgroupp , 1997, CRYPTO.

[58]  Bank lending in Switzerland: Capturing cross-sectional heterogeneity and asymmetry over time , 2019 .

[59]  A. Talha Yalta,et al.  Should Economists Use Open Source Software for Doing Research? , 2010 .

[60]  Jan Camenisch,et al.  Endorsed E-Cash , 2007, 2007 IEEE Symposium on Security and Privacy (SP '07).