Phase transitions for random walk asymptotics on free products of groups

Suppose we are given finitely generated groups Γ1,…,Γm equipped with irreducible random walks. Thereby we assume that the expansions of the corresponding Green functions at their radii of convergence contain only logarithmic or algebraic terms as singular terms up to sufficiently large order (except for some degenerate cases). We consider transient random walks on the free product Γ1* … *Γm and give a complete classification of the possible asymptotic behaviour of the corresponding n-step return probabilities. They either inherit a law of the form ϱnδn**math-image** log **math-image**n from one of the free factors Γi or obey a ϱnδn−3/2-law, where ϱ \documentclass{article} \usepackage{amsmath, amsthm, amssymb, amsfonts}\pagestyle{empty}\begin{document} $\mathbb{Z}^{d_1}\ast \ldots \ast \mathbb{Z}^{d_m}$ \end{document} **image** . Moreover, we characterize the possible phase transitions of the non-exponential types n**math-image** log **math-image**n in the case Γ1 * Γ2. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2012 © 2012 Wiley Periodicals, Inc.

[2]  A local limit theorem for random walks on certain discrete groups , 1982 .

[3]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[4]  Random walks on free products, quotients and amalgams , 1986 .

[5]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[6]  Random walks on free products , 1991 .

[7]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[8]  Connected Lie groups and property RD , 2004, math/0409413.

[9]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[10]  Lorenz A. Gilch Asymptotic Entropy of Random Walks on Free Products , 2010, 1005.4778.

[11]  F. Olver Asymptotics and Special Functions , 1974 .

[12]  W. Woess,et al.  Local limits and harmonic functions for nonisotropic random walks on free groups , 1986 .

[13]  D. I. Cartwright,et al.  A local limit theorem for random walks on the Cartesian product of discrete groups , 1987 .

[14]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[15]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[16]  Peter Gerl A Local Central Limit Theorem on Some Groups , 1981 .

[17]  Donald I. Cartwright,et al.  Some examples of random walks on free products of discrete groups , 1988 .

[18]  S. Lalley Finite Range Random Walk on Free Groups and Homogeneous Trees , 1993 .

[19]  Stanley Sawyer,et al.  Isotropic random walks in a tree , 1978 .

[20]  D. I. Cartwright On the asymptotic behaviour of convolution powers of probabilities on discrete groups , 1989 .