Kantorovich-Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations

Abstract We show that the space of subprobability measures, equivalently of subprobability continuous valuations, on an algebraic (resp., continuous) complete quasi-metric space is again algebraic (resp., continuous) and complete, when equipped with the Kantorovich-Rubinstein quasi-metrics d KR (unbounded) or d KR a (bounded), themselves asymmetric forms of the well-known Kantorovich-Rubinstein metric. We also show that the d KR -Scott and the d KR a -Scott topologies then coincide with the weak topology. We obtain similar results for spaces of probability measures, equivalently of probability continuous valuations, with the d KR a quasi-metrics, or with the d KR quasi-metric under an additional rootedness assumption.

[1]  Jean Goubault-Larrecq Some topological properties of spaces of Lipschitz continuous maps on quasi-metric spaces , 2020 .

[2]  L. Kantorovich On the Translocation of Masses , 2006 .

[3]  Claire Jones,et al.  Probabilistic non-determinism , 1990 .

[4]  Jean Goubault-Larrecq,et al.  Domain-complete and LCS-complete Spaces , 2019, ISDT.

[5]  Jean Goubault-Larrecq Formal ball monads , 2019, Topology and its Applications.

[6]  Ivan Lanese,et al.  Dynamic Choreographies: Theory And Implementation , 2017, Log. Methods Comput. Sci..

[7]  X. Fernique Sur le theoreme de kantorovitch-rubinstein dans les espaces polonais , 1981 .

[8]  Jean Goubault-Larrecq,et al.  Continuous Previsions , 2007, CSL.

[9]  Jean Goubault-Larrecq,et al.  Simulation Hemi-metrics between Infinite-State Stochastic Games , 2008, FoSSaCS.

[10]  Weng Kin Ho,et al.  Quasi-continuous Yoneda Complete Quasi-Metric Space , 2019, ISDT.

[11]  Completeness of the Space of Separable Measures in the Kantorovich-Rubinshtein Metric , 2006 .

[12]  C. Jones,et al.  A probabilistic powerdomain of evaluations , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[13]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[14]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[15]  F. Bolley Separability and completeness for the Wasserstein distance , 2008 .

[16]  Philipp Sünderhauf Spaces of valuations as quasimetric domains , 1998, Electron. Notes Theor. Comput. Sci..

[17]  Marcello M. Bonsangue,et al.  Generalized Metric Spaces: Completion, Topology, and Powerdomains via the Yoneda Embedding , 1995, Theor. Comput. Sci..

[18]  A. Acosta Invariance Principles in Probability for Triangular Arrays of $B$-Valued Random Vectors and Some Applications , 1982 .

[19]  G. Choquet Theory of capacities , 1954 .

[20]  Jean Goubault-Larrecq,et al.  A Few Notes on Formal Balls , 2016, Log. Methods Comput. Sci..

[21]  Complete Quasi-Metrics for Hyperspaces, Continuous Valuations, and Previsions , 2017, 1707.03784.

[22]  Abbas Edalat Domain Theory and Integration , 1995, Theor. Comput. Sci..

[23]  Klaus Weihrauch,et al.  Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..

[24]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[25]  τ-smooth BOREL Measures on Topological Spaces , 1977 .

[26]  Pawel Waszkiewicz,et al.  The formal ball model for -categories , 2010, Mathematical Structures in Computer Science.

[27]  Jean Goubault-Larrecq Non-Hausdorff Topology and Domain Theory - Selected Topics in Point-Set Topology , 2013, New Mathematical Monographs.

[28]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[29]  Martín Hötzel Escardó,et al.  Properly injective spaces and function spaces , 1998 .