High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4

National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (grant no. DMR-0819762)

[1]  Jiawei Wang,et al.  Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel via ethylene glycol-assisted synthesis , 2010 .

[2]  Chusheng Chen,et al.  Electrochemical properties of nano- and micro-sized LiNi0.5Mn1.5O4 synthesized via thermal decomposition of a ternary eutectic Li–Ni–Mn acetate , 2010 .

[3]  Yang-Kook Sun,et al.  Development of LiNi0.5Mn1.5O4 / Li4Ti5O12 System with Long Cycle Life , 2009 .

[4]  John R. Owen,et al.  How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors , 2009 .

[5]  A. Manthiram,et al.  Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 Before and After Surface Modifications , 2009 .

[6]  Yang-Kook Sun,et al.  Improved electrochemical properties of BiOF-coated 5 V spinel Li[Ni0.5Mn1.5]O4 for rechargeable lithium batteries , 2010 .

[7]  Lise Daniel,et al.  High voltage spinel oxides for Li-ion batteries: From the material research to the application , 2009 .

[8]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[9]  A. Manthiram,et al.  Improved Electrochemical Performance of the 5 V Spinel Cathode LiMn1.5Ni0.42Zn0.08O4 by Surface Modification , 2009 .

[10]  Robert Dominko,et al.  The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc , 2008 .

[11]  A. West,et al.  Oxygen Nonstoichiometry and Phase Transitions in LiMn1.5Ni0.5O4 − δ , 2008 .

[12]  Ying Shirley Meng,et al.  Electrochemical Properties of Nonstoichiometric LiNi0.5Mn1.5O4 − δ Thin-Film Electrodes Prepared by Pulsed Laser Deposition , 2007 .

[13]  Doron Aurbach,et al.  Comparing the Behavior of Nano- and Microsized Particles of LiMn1.5Ni0.5O4 Spinel as Cathode Materials for Li-Ion Batteries , 2007 .

[14]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[15]  Xin-guo Hu,et al.  Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method , 2007 .

[16]  H. Fang,et al.  A low-temperature reaction route to high rate and high capacity LiNi0.5Mn1.5O4 , 2007 .

[17]  G. Amatucci,et al.  Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50 ≥ x ≥ 0.36) spinels , 2007 .

[18]  D. Aurbach,et al.  Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells , 2006 .

[19]  G. Ceder,et al.  Factors that affect Li mobility in layered lithium transition metal oxides , 2006 .

[20]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[21]  Glenn G. Amatucci,et al.  Synthesis and Characterization of Nanostructured 4.7 V Li x Mn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries , 2006 .

[22]  Steven R. Hall,et al.  Lithium Rechargeable Batteries as Electromechanical Actuators , 2006 .

[23]  Ying Shirley Meng,et al.  Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries , 2006, Science.

[24]  Á. Caballero,et al.  Expanding the Rate Capabilities of the LiNi0.5Mn1.5O4 Spinel by Exploiting the Synergistic Effect Between Nano and Microparticles , 2005 .

[25]  Doron Aurbach,et al.  The study of LiNi0.5Mn1.5O4 5-V cathodes for Li-ion batteries , 2005 .

[26]  M. Wakihara Lithium Manganese Oxides with Spinel Structure and Their Cathode Properties for Lithium Ion Battery , 2005 .

[27]  R. Huggins,et al.  Phosphate materials for cathodes in lithium ion secondary batteries , 2005 .

[28]  Jan L. Allen,et al.  Ni3+/Ni2+ redox potential in LiNiPO4 , 2005 .

[29]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[30]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[31]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[32]  T. Ohzuku,et al.  Topotactic Two-Phase Reactions of Li [ Ni1 / 2Mn3 / 2 ] O 4 ( P4332 ) in Nonaqueous Lithium Cells , 2004 .

[33]  T. Ohzuku,et al.  Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4 , 2003 .

[34]  Gerbrand Ceder,et al.  Lithium diffusion mechanisms in layered intercalation compounds , 2001 .

[35]  M. Islam,et al.  Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates , 1997 .

[36]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .

[37]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .