Near-infrared OPO in an AlGaAs/AlOx waveguide

Within the ambitious quest for an electrically pumped version of the optical parametric oscillator (OPO), we demonstrate the first near-infrared integrated OPO in a direct gap semiconductor. This nonlinear device is based on a selectively oxidized GaAs/AlAs heterostructure, the same “AlOx” technology that is at the heart of VCSEL fabrication. The heterostructure and waveguide design allows for type-I form-birefringent phase matching, with a TM00 pump around 1 μm and TE00 signal and idler around 2 μm. Relying on the high non-resonant χ(2) of GaAs, relatively weak guided-wave optical losses, and monolithic SiO2/TiO2 dichroic Bragg mirrors, we observe a threshold of 210 mW at degeneracy in the continuous-wave regime, with a single-pass-pump doubly resonant scheme. Further improvement can be achieved by adopting a double-pump-pass scheme and, in a more fundamental way, by further optimizing the waveguide optical losses. The latter are induced by a not entirely mastered AlAs oxidation process and are of two distinct types: Rayleighlike scattering at signal and idler wavelength (α ≤ 1cm-1), due to the interface roughness between GaAs and AlOx layers; and absorption at pump wavelengths (α ≈ 3cm-1), due to volume defects in the GaAs layers adjacent to the aluminum oxide. This result marks a milestone for integrated nonlinear photonics and represents a significant step toward the goal of a broadly tunable coherent light source on chip.

[1]  P. Blau,et al.  Optical parametric oscillation in orientation patterned GaAs waveguides , 2012, Other Conferences.

[2]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers with AlAs oxide-GaAs distributed Bragg reflectors , 1995, IEEE Photonics Technology Letters.

[3]  Umesh K. Mishra,et al.  Photoluminescence study of hydrogenated aluminum oxide–semiconductor interface , 1997 .

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[6]  Siegfried Janz,et al.  Second-harmonic generation at l=1.6 micro m in AlGaAs/Al2O3 waveguides using birefringence phase matching , 1998 .

[7]  Giuseppe Leo,et al.  TEM characterization of oxidized AlGaAs/AlAs nonlinear optical waveguides , 2010 .

[8]  Nick Holonyak,et al.  AlxGa1−xAs–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs , 1995 .

[9]  Ivo Montrosset,et al.  Numerical modeling of Ti:LiNbO 3 integrated optical parametric oscillators , 1987 .

[10]  M M Fejer,et al.  Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides. , 1997, Optics letters.

[11]  Raimund Ricken,et al.  Integrated optical parametric devices , 1986 .

[12]  M. Calligaro,et al.  Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides , 2004 .

[13]  M. E. Cox Handbook of Optics , 1980 .

[14]  Isabelle Sagnes,et al.  Measuring propagation loss in a multimode semiconductor waveguide , 2005 .

[15]  Bardia Pezeshki,et al.  Recombination in GaAs at the AlAs oxide‐GaAs interface , 1995 .

[16]  A. Baca,et al.  Fabrication of GaAs Devices , 2005 .

[17]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[18]  H. Macleod,et al.  Thin-Film Optical Filters, Fourth Edition , 2010 .

[19]  R. C. Miller,et al.  Tunable Coherent Parametric Oscillation in LiNb O 3 at Optical Frequencies , 1965 .

[20]  Ivan Favero,et al.  Parametric amplification in GaAs/AlOx waveguide , 2009 .

[21]  John E. Bjorkholm,et al.  Improvement of optical parametric oscillators by nonresonant pump reflection , 1970 .

[22]  Yeung Lak Lee,et al.  Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides , 2001, SPIE OPTO.

[23]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[24]  Martin M. Fejer,et al.  Growth of GaAs with orientation-patterned structures for nonlinear optics , 2007 .

[25]  Yan-Kuin Su,et al.  Evolution of conduction and interface states of laterally wet-oxidized AlGaAs with oxidation time , 2006 .

[26]  Bruno Gérard,et al.  Quasi-phase-matched gallium arsenide for versatile mid-infrared frequency conversion , 2012 .

[27]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[28]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[29]  Andrew G. Glen,et al.  APPL , 2001 .

[30]  B. E. Hammons,et al.  Advances in selective wet oxidation of AlGaAs alloys , 1997 .

[31]  Rachel Won,et al.  Integrating silicon photonics , 2010 .

[32]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[33]  A. Monmayrant,et al.  Observation of overstrain in the coalescence zone of AlAs/AlOx oxidation fronts , 2011 .

[34]  A. Fiore,et al.  Phase matching using an isotropic nonlinear optical material , 1998, Nature.

[35]  M M Fejer,et al.  Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO(3) waveguides. , 1995, Optics letters.

[36]  Dongpeng Kang,et al.  Broadband difference-frequency generation in AlGaAs Bragg reflection waveguides , 2010, 2010 IEEE Photinic Society's 23rd Annual Meeting.

[37]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[38]  J. P. van der Ziel,et al.  Phase−matched harmonic generation in a laminar structure with wave propagation in the plane of the layers , 1975 .

[40]  Ivan Favero,et al.  Nearly-degenerate three-wave mixing at 1.55 μm in oxidized AlGaAs waveguides. , 2011, Optics express.

[41]  Wei-I Lee,et al.  Ga0.5in0.5P barrier layer for wet oxidation of AlAs , 2000 .