Problems and results in extremal combinatorics--I

[1]  A. Rubinstein,et al.  On Optimal Rules of Persuasion , 2004 .

[2]  Stefan Geschke,et al.  Continuous Ramsey Theory on Polish Spaces and Covering the plane by Functions , 2002, Journal of Mathematical Logic.

[3]  M. Simonovits Some extremal problems in graph theory , 2004 .

[4]  Richard M. Karp,et al.  A stochastic process on the hypercube with applications to peer-to-peer networks , 2003, STOC '03.

[5]  Ariel Rubinstein,et al.  A Model of Optimal Persuasion Rules , 2003 .

[6]  Warren D. Smith,et al.  Reconstructing Sets From Interpoint Distances , 2003 .

[7]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[8]  András Gyárfás Transitive Edge Coloring of Graphs and Dimension of Lattices , 2002, Comb..

[9]  Adi Shamir,et al.  The LSD Broadcast Encryption Scheme , 2002, CRYPTO.

[10]  Alexander K. Kelmans,et al.  Asymptotically Optimal Tree-Packings in Regular Graphs , 2001, Electron. J. Comb..

[11]  Robin Thomas,et al.  Large induced forests in sparse graphs , 2001, J. Graph Theory.

[12]  Raphael Yuster Large Monotone Paths in Graphs with Bounded Degree , 2001, Graphs Comb..

[13]  Penny Haxell,et al.  A Note on Vertex List Colouring , 2001, Combinatorics, Probability and Computing.

[14]  Noga Alon,et al.  On the maximum number of Hamiltonian paths in tournaments , 2001, Random Struct. Algorithms.

[15]  Noga Alon,et al.  Ramsey-type Theorems with Forbidden Subgraphs , 2001, Comb..

[16]  Zsolt Tuza,et al.  Oriented list colorings of graphs , 2001, J. Graph Theory.

[17]  Stasys Jukna,et al.  Extremal Combinatorics , 2001, Texts in Theoretical Computer Science. An EATCS Series.

[18]  T. Althuis,et al.  Graph theoretic aspects of music theory , 2001 .

[19]  Vladimir Dol'nikov Some Properties of Graphs of Diameters , 2000, Discret. Comput. Geom..

[20]  Noga Alon,et al.  Degrees and choice numbers , 2000, Random Struct. Algorithms.

[21]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[22]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.

[23]  Raphael Yuster,et al.  Independent transversals in r-partite graphs , 1997, Discret. Math..

[24]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[25]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[26]  Vojtech Rödl,et al.  Dense Graphs without 3-Regular Subgraphs , 1995, J. Comb. Theory, Ser. B.

[27]  Moshe Morgenstern,et al.  Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.

[28]  N. Alon Restricted colorings of graphs , 1993 .

[29]  Guoping Jin,et al.  Complete Subgraphs of r-partite Graphs , 1992, Combinatorics, probability & computing.

[30]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[31]  James Aspnes,et al.  The expressive power of voting polynomials , 1991, STOC '91.

[32]  Michael Stiebitz,et al.  On constructive methods in the theory of colour-critical graphs , 1989, Discret. Math..

[33]  Nathan Linial,et al.  Results on learnability and the Vapnick-Chervonenkis dimension , 1988, COLT '88.

[34]  N. Alon The linear arboricity of graphs , 1988 .

[35]  Noga Alon,et al.  Large induced degenerate subgraphs , 1987, Graphs Comb..

[36]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[37]  N. Alon Monochromatic directed walks in arc-colored directed graphs , 1987 .

[38]  Béla Bollobás,et al.  Random Graphs , 1985 .

[39]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[40]  Noga Alon,et al.  Regular subgraphs of almost regular graphs , 1984, J. Comb. Theory, Ser. B.

[41]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[42]  A. Robert Calderbank,et al.  Increasing sequences with nonzero block sums and increasing paths in edge-ordered graphs , 1984, Discret. Math..

[43]  Tom C. Brown,et al.  A Density Version of a Geometric Ramsey Theorem , 1982, J. Comb. Theory, Ser. A.

[44]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[45]  L. Lovász Combinatorial problems and exercises , 1979 .

[46]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[47]  A. Hilton A THEOREM ON FINITE SETS , 1976 .

[48]  Endre Szemerédi,et al.  On complete subgraphs of r-chromatic graphs , 1975, Discret. Math..

[49]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[50]  B. Bollobás,et al.  Complete subgraphs of chromatic graphs and hyper-graphs , 1974 .

[51]  R. Graham,et al.  Increasing paths in edge ordered graphs , 1973 .

[52]  V. Chvatal,et al.  Some Combinatorial Theorems on Monotonicity , 1971, Canadian Mathematical Bulletin.

[53]  Bolyai János Matematikai Társulat,et al.  Combinatorial theory and its applications , 1970 .

[54]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[55]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.

[56]  M. Hasse Zur algebraischen Begrndung der Graphentheorie. III , 1965 .

[57]  B. Grünbaum A simple proof of Borsuk's conjecture in three dimensions , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[58]  H. Eggleston Covering a Three‐Dimensional set with Sets of Smaller Diameter , 1955 .

[59]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[60]  J. Singer A theorem in finite projective geometry and some applications to number theory , 1938 .

[61]  Karol Borsuk Drei Sätze über die n-dimensionale euklidische Sphäre , 1933 .