Global existence of the two-dimensional axisymmetric Euler equations for the Chaplygin gas with large angular velocities

Abstract The Chaplygin gas model is both interesting and important in the theory of gas dynamics and conservation laws, all the characteristic families of which are linearly degenerate. Majda conjectured that the shock formation never happens for smooth data. In this article, we prove the conjecture for the two space dimensional axisymmetric case. Different from previous approaches to study wave equations with different speeds, we reformulate the problem in the Lagrangian coordinates and consider a single wave equation with variable coefficients. This not only gives a simpler proof but also enables us to treat the case with large angular velocities.

[1]  A. Arnold,et al.  On the exponential time-decay for the one-dimensional wave equation with variable coefficients , 2022, Communications on Pure and Applied Analysis.

[2]  J. Szeftel,et al.  On blow up for the energy super critical defocusing nonlinear Schrödinger equations , 2021, Inventiones mathematicae.

[3]  Huicheng Yin,et al.  Long time existence of smooth solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity , 2021, Discrete and Continuous Dynamical Systems.

[4]  Yuzhu Wang,et al.  Global smooth solutions to 3D irrotational Euler equations for Chaplygin gases , 2020 .

[5]  F. Merle,et al.  On smooth self similar solutions to the compressible Euler equations , 2019, 1912.10998.

[6]  F. Merle,et al.  On the implosion of a three dimensional compressible fluid , 2019, 1912.11009.

[7]  Huicheng Yin,et al.  Global smooth axisymmetric solutions to 2D compressible Euler equations of Chaplygin gases with non-zero vorticity , 2018, Journal of Differential Equations.

[8]  Mengyun Liu,et al.  Global Existence for Some 4-D Quasilinear Wave Equations with Low Regularity , 2017, 1709.00967.

[9]  Jacob Shapiro Local energy decay for Lipschitz wavespeeds , 2017, 1707.06716.

[10]  Jared Speck Shock Formation for 2D Quasilinear Wave Systems Featuring Multiple Speeds: Blowup for the Fastest Wave, with Non-trivial Interactions up to the Singularity , 2017, 1701.06728.

[11]  Jared Speck,et al.  Shock formation in solutions to the 2D compressible Euler equations in the presence of non-zero vorticity , 2016, Inventiones mathematicae.

[12]  Shuang Miao,et al.  On the formation of shocks for quasilinear wave equations , 2014, 1412.3058.

[13]  Yin Huicheng,et al.  The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases , 2014, 1407.7347.

[14]  S. Klainerman,et al.  Shock Formation in Small-Data Solutions to $3D$ Quasilinear Wave Equations: An Overview , 2014, 1407.6320.

[15]  Demetrios Christodoulou,et al.  Compressible flow and Euler's equations , 2012, 1212.2867.

[16]  Hachemi B. Benaoum Modified Chaplygin Gas Cosmology , 2012, 1211.3518.

[17]  D. Christodoulou The Formation of Shocks in 3-Dimensional Fluids , 2007 .

[18]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[19]  E. Copeland,et al.  Dynamics of dark energy , 2006, hep-th/0603057.

[20]  Hart F. Smith,et al.  Sharp local well-posedness results for the nonlinear wave equation , 2005 .

[21]  Serge Alinhac,et al.  Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux , 1993 .

[22]  M. Rammaha,et al.  Formation of singularities in compressible fluids in two-space dimensions , 1989 .

[23]  Thomas C. Sideris,et al.  Formation of singularities in three-dimensional compressible fluids , 1985 .

[24]  M. Lighthill Supersonic Flow and Shock Waves , 1949, Nature.

[25]  Huicheng Yin,et al.  On global axisymmetric solutions to 2D compressible full Euler equations of Chaplygin gases , 2020, Discrete & Continuous Dynamical Systems - A.

[26]  A. Bressan Hyperbolic Conservation Laws , 2009, Encyclopedia of Complexity and Systems Science.

[27]  Paul Godin,et al.  Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy , 2007 .

[28]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[29]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[30]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .