Fast, accurate, and small-scale direct trajectory optimization using a Gegenbauer transcription method

This paper reports a novel direct Gegenbauer (ultraspherical) transcription method (GTM) for solving continuous-time optimal control (OC) problems (CTOCPs) with linear/nonlinear dynamics and path constraints. In (Elgindy et al. 2012) [1], we presented a GTM for solving nonlinear CTOCPs directly for the state and the control variables, and the method was tailored to find the best path for an unmanned aerial vehicle mobilizing in a stationary risk environment. This article extends the GTM to deal further with problems including higher-order time derivatives of the states by solving the CTOCP directly for the control u(t) and the highest-order time derivative x^(^N^)(t),N@?Z^+. The state vector and its derivatives up to the (N-1)th-order derivative can then be stably recovered by successive integration. Moreover, we present our solution method for solving linear-quadratic regulator (LQR) problems as we aim to cover a wider collection of CTOCPs with the concrete aim of comparing the efficiency of the current work with other classical discretization methods in the literature. The proposed numerical scheme fully parameterizes the state and the control variables using Gegenbauer expansion series. For problems with various order time derivatives of the state variables arising in the cost function, dynamical system, or path/terminal constraints, the GTM seeks to fully parameterize the control variables and the highest-order time derivatives of the state variables. The time horizon is mapped onto the closed interval [0,1]. The dynamical system characterized by differential equations is transformed into its integral formulation through direct integration. The resulting problem on the finite interval is then transcribed into a nonlinear programming (NLP) problem through collocation at the Gegenbauer-Gauss (GG) points. The integral operations are approximated by optimal Gegenbauer quadratures in a certain optimality sense. The reduced NLP problem is solved in the Gegenbauer spectral space, and the state and the control variables are approximated on the entire finite horizon. The proposed method achieves discrete solutions exhibiting exponential convergence using relatively small-scale number of collocation points. The advantages of the proposed direct GTM over other traditional discretization methods are shown through four well-studied OC test examples. The present work is a major breakthrough in the area of computational OC theory as it delivers significantly more accurate solutions using considerably smaller numbers of collocation points, states and controls expansion terms. Moreover, the GTM produces very small-scale NLP problems, which can be solved very quickly using the modern NLP software.

[1]  Tobin A. Driscoll,et al.  Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations , 2010, J. Comput. Phys..

[2]  Eid H. Doha,et al.  An accurate solution of parabolic equations by expansion in ultraspherical polynomials , 1990 .

[3]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[4]  Elsayed M. E. Elbarbary,et al.  Pseudospectral integration matrix and boundary value problems , 2007, Int. J. Comput. Math..

[5]  Dan S. Henningson,et al.  An efficient spectral integration method for the solution of the Navier-Stokes equations , 1992 .

[6]  Chun-Hui Hsiao State analysis of linear time delayed systems via Haar wavelets , 1997 .

[7]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[8]  Kate Smith-Miles,et al.  Optimal Gegenbauer quadrature over arbitrary integration nodes , 2013, J. Comput. Appl. Math..

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  Elsayed M. E. Elbarbary,et al.  Integration Preconditioning Matrix for Ultraspherical Pseudospectral Operators , 2006, SIAM J. Sci. Comput..

[11]  W. Kang Rate of convergence for the Legendre pseudospectral optimal control of feedback linearizable systems , 2010 .

[12]  Wei Kang,et al.  The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.

[13]  I.M. Ross,et al.  A Unified Pseudospectral Framework for Nonlinear Controller and Observer Design , 2007, 2007 American Control Conference.

[14]  Nianyu Yi,et al.  Error estimates of mixed finite element methods for quadratic optimal control problems , 2010, J. Comput. Appl. Math..

[15]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[16]  M. Shamsi,et al.  Solution of nonlinear optimal control problems by the interpolating scaling functions , 2012 .

[17]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[18]  M. S. Salim,et al.  A Chebyshev approximation for solving optimal control problems , 1995 .

[19]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[20]  Yau Shu Wong,et al.  Spectral multigrid methods for elliptic equations II , 1982 .

[21]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..

[22]  E. Polak,et al.  Consistent Approximations for Optimal Control Problems Based on Runge--Kutta Integration , 1996 .

[23]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[24]  Kareem T. Elgindy,et al.  Solving optimal control problems using a gegenbauer transcription method , 2012, 2012 2nd Australian Control Conference.

[25]  I.M. Ross,et al.  On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[26]  Wei Kang,et al.  Pseudospectral Optimal Control Theory Makes Debut Flight, Saves NASA $1M in Under Three Hours , 2007 .

[27]  Philip S. Marcus,et al.  A 3D spectral anelastic hydrodynamic code for shearing, stratified flows , 2006, J. Comput. Phys..

[28]  P. N. Paraskevopoulos,et al.  Chebyshev series approach to system identification, analysis and optimal control , 1983 .

[29]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[30]  Farideh Ghoreishi,et al.  A preconditioned implementation of pseudospectral methods on arbitrary grids , 2004, Appl. Math. Comput..

[31]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[32]  Daniele Funaro,et al.  A Preconditioning Matrix for the Chebyshev Differencing Operator , 1987 .

[33]  Leslie Greengard,et al.  Spectral integration and two-point boundary value problems , 1991 .

[34]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[35]  Tao Tang,et al.  A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method for Optimal Control Problems Governed by Parabolic Equations , 2004, SIAM J. Numer. Anal..

[36]  J. M. Martínez,et al.  Euler Discretization and Inexact Restoration for Optimal Control , 2007 .

[37]  B. Fornberg An improved pseudospectral method for fluid dynamics boundary value problems , 1990 .

[38]  Kareem T. Elgindy Generation of higher order pseudospectral integration matrices , 2009, Appl. Math. Comput..

[39]  I. Michael Ross,et al.  Direct Trajectory Optimization by a Chebyshev Pseudospectral Method ; Journal of Guidance, Control, and Dynamics, v. 25, 2002 ; pp. 160-166 , 2002 .

[40]  Hussein Jaddu,et al.  Spectral method for constrained linear-quadratic optimal control , 2002, Math. Comput. Simul..

[41]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[42]  Justin Ruths,et al.  Convergence of a pseudospectral method for optimal control of complex dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[43]  Roland Becker,et al.  Optimal control of the convection-diffusion equation using stabilized finite element methods , 2007, Numerische Mathematik.

[44]  Leslie Greengard,et al.  On the Numerical Solution of Two-Point Boundary Value Problems , 1991 .

[45]  Abdel-Rahman Hedar,et al.  A new robust line search technique based on Chebyshev polynomials , 2008, Appl. Math. Comput..

[46]  I. Michael Ross,et al.  On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems , 2007 .

[47]  R. W. Douglass,et al.  A modified tau spectral method that eliminated spurious eigenvalues , 1989 .

[48]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[49]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[50]  I. Michael Ross,et al.  A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .

[51]  M. Razzaghi,et al.  Hybrid functions approach for nonlinear constrained optimal control problems , 2012 .

[52]  Wei Kang,et al.  Pseudospectral Optimal Control and Its Convergence Theorems , 2008 .

[53]  Mohsen Razzaghi,et al.  A legendre technique for solving time-varying linear quadratic optimal control problems , 1993 .

[54]  C. Yalçin Kaya,et al.  Inexact Restoration for Runge-Kutta Discretization of Optimal Control Problems , 2010, SIAM J. Numer. Anal..

[55]  W. Glabisz The use of Walsh-wavelet packets in linear boundary value problems , 2004 .

[56]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[57]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[58]  Yanping Chen,et al.  Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods , 2010 .

[59]  Wen Zhang,et al.  An Efficient Chebyshev Algorithm for the Solution of Optimal Control Problems , 2011, IEEE Transactions on Automatic Control.

[60]  Costas Kiparissides,et al.  Finite-element solution of nonlinear optimal control problems with a quadratic performance index , 1987 .

[61]  William W. Hager,et al.  Direct trajectory optimization and costate estimation of finite-horizon and infinite-horizon optimal control problems using a Radau pseudospectral method , 2011, Comput. Optim. Appl..

[62]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[63]  Mohsen Razzaghi,et al.  HYBRID FUNCTIONS APPROACH FOR LINEARLY CONSTRAINED QUADRATIC OPTIMAL CONTROL PROBLEMS , 2003 .

[64]  R. Pytlak,et al.  Runge–Kutta Based Procedure for the Optimal Control of Differential-Algebraic Equations , 1998 .

[65]  Mark L. Nagurka,et al.  Linear Quadratic Optimal Control Via Fourier-Based State Parameterization , 1991 .

[66]  Gamal N. Elnagar,et al.  Short communication: A collocation-type method for linear quadratic optimal control problems , 1997 .

[67]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[68]  Wei Kang,et al.  Convergence of Pseudospectral Methods for a Class of Discontinuous Optimal Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[69]  S. Bayin,et al.  Mathematical Methods in Science and Engineering , 2006 .

[70]  O. V. Stryk,et al.  Numerical Solution of Optimal Control Problems by Direct Collocation , 1993 .

[71]  Feng-Gong Lang,et al.  Quintic B-spline collocation method for second order mixed boundary value problem , 2012, Comput. Phys. Commun..

[72]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[73]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[74]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[75]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[76]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[77]  Anil V. Rao,et al.  EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .

[78]  Kate Smith-Miles,et al.  Solving boundary value problems, integral, and integro-differential equations using Gegenbauer integration matrices , 2013, J. Comput. Appl. Math..

[79]  Gamal N. Elnagar State-control spectral Chebyshev parameterization for linearly constrained quadratic optimal control problems , 1997 .

[80]  William W. Hager,et al.  Second-Order Runge-Kutta Approximations in Control Constrained Optimal Control , 2000, SIAM J. Numer. Anal..

[81]  Israel Koltracht,et al.  Integral Equation Method for the Continuous Spectrum Radial Schrödinger Equation , 1997 .

[82]  William W. Hager,et al.  A unified framework for the numerical solution of optimal control problems using pseudospectral methods , 2010, Autom..

[83]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[84]  Vladimir Rokhlin,et al.  A New Class of Highly Accurate Differentiation Schemes Based on the Prolate Spheroidal Wave Functions , 2012 .

[85]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[86]  Qi Gong,et al.  A Chebyshev pseudospectral method for nonlinear constrained optimal control problems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[87]  Alexander B. Miller,et al.  3D path planning in a threat environment , 2011, IEEE Conference on Decision and Control and European Control Conference.

[88]  Mohsen Razzaghi,et al.  Rationalized Haar approach for nonlinear constrained optimal control problems , 2010 .

[89]  L. Trefethen,et al.  An Instability Phenomenon in Spectral Methods , 1987 .

[90]  Amir Averbuch,et al.  Multidomain local Fourier method for PDEs in complex geometries , 1996 .

[91]  Fenglin Huang,et al.  A Legendre-Galerkin Spectral Method for Optimal Control Problems Governed by Stokes Equations , 2011, SIAM J. Numer. Anal..

[92]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[93]  M. S. Salim,et al.  Ultraspherical Integral Method for Optimal Control Problems Governed by Ordinary Differential Equations , 2003, J. Glob. Optim..

[94]  W. Kang On the Rate of Convergence for the Pseudospectral Optimal Control of Feedback Linearizable Systems , 2009, 0904.0833.

[95]  William W. Hager,et al.  The Euler approximation in state constrained optimal control , 2001, Math. Comput..

[96]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[97]  S. E. El-gendi,et al.  Chebyshev Solution of Differential, Integral and Integro-Differential Equations , 1969, Comput. J..

[98]  Arjun Singh Yadaw,et al.  B-Spline collocation method for a two-parameter singularly perturbed convection-diffusion boundary value problems , 2008, Appl. Math. Comput..

[99]  H. Sirisena,et al.  Computation of constrained optimal controls using parameterization techniques , 1974 .

[100]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[101]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[102]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.