Process requirements for continued scaling of CMOS-the need and prospects for atomic-level manipulation

Since the advent of the Si-based integrated circuit, ever-increasing function has been available at reduced cost and with reduced consumption of power. This "semiconductor revolution" has been possible because semiconductor devices have the unique feature that as they become smaller they also become faster, consume less power, become cheaper per circuit, and enable more function per unit area of Si. As the basic device approaches atomic dimensions, it is not clear how far scaling can continue, which current processing technologies lack extendibility, and what innovative process technologies will emerge to take their place. Examination of some of the requirements set forth in the International Technology Roadmap for Semiconductors (ITRS) [1] will expose some of the process modules that are likely to limit scaling. Future work that might be developed to meet the needs of the CMOS roadmap will then be initiated. Among the processes being developed for future needs are a range of selflimited growth and etching reactions as well as other process steps that take advantage of atomic-level control and manipulation to enable new classes of substrate materials. The requirements that drive such a level of control, as well as the progress and prospects for these new techniques, are discussed in this paper.

[1]  F. Wanlass,et al.  Nanowatt logic using field-effect metal-oxide semiconductor triodes , 1963 .

[2]  Shin Yokoyama,et al.  Atomic-layer-deposited silicon-nitride/SiO2 stacked gate dielectrics for highly reliable p-metal–oxide–semiconductor field-effect transistors , 2000 .

[3]  Daniel D. Koleske,et al.  Epitaxial Si films on Ge(100) grown via H/Cl exchange , 1993 .

[4]  Yoshito Jin,et al.  Generation of Electron Cyclotron Resonance Neutral Stream and Its Application to Si Etching , 1994 .

[5]  Daniel D. Koleske,et al.  Precursors for Si atomic layer epitaxy: Real time adsorption studies on Si(100) , 1992 .

[6]  Akihiro Yoshida,et al.  SELECTIVE AREA GROWTH BY METAL ORGANIC VAPOR PHASE EPITAXY AND ATOMIC LAYER EPITAXY USING GA2O3 AS A NOVEL MASK LAYER , 1999 .

[7]  Yasuhiro Yamamoto,et al.  Digital etching of GaAs: New approach of dry etching to atomic ordered processing , 1990 .

[8]  April S. Brown,et al.  Compliant substrate technology: Status and prospects , 1998 .

[9]  Dimitris Pavlidis,et al.  Photoluminescence properties of GaN grown on compliant silicon-on-insulator substrates , 1997 .

[10]  Carlton M. Osburn,et al.  Metal Silicides: Active elements of ULSI contacts , 1996 .

[11]  Moore,et al.  Gas-Surface Dynamics and Profile Evolution during Etching of Silicon. , 1996, Physical review letters.

[12]  James D. Plummer,et al.  Ultra low energy arsenic implant limits on sheet resistance and junction depth , 2000, 2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104).

[13]  J. C. Sarace,et al.  Metal-nitride-oxide-silicon field-effect transistors, with self-aligned gates☆ , 1968 .

[14]  V. Narayanan,et al.  Reduction of metal-semiconductor contact resistance by embedded nanocrystals , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[15]  G. Teal,et al.  Single crystals of germanium and silicon—Basic to the transistor and integrated circuit , 1976, IEEE Transactions on Electron Devices.

[16]  Matthias K. Gobbert,et al.  A Multiscale Simulator for Low Pressure Chemical Vapor Deposition , 1997 .

[17]  Subramanian S. Iyer,et al.  Approach to obtain high quality GaN on Si and SiC-on-silicon-on-insulator compliant substrate by molecular-beam epitaxy , 1995 .

[18]  Steven M. George,et al.  Atomic Layer Deposition of Tungsten Nitride Films Using Sequential Surface Reactions , 2000 .

[19]  U. Gösele,et al.  Principles of strain relaxation in heteroepitaxial films growing on compliant substrates , 2000 .

[20]  Keizo Suzuki,et al.  Anisotropic etching of polycrystalline silicon with a hot Cl2 molecular beam , 1988 .

[21]  Steven M. George,et al.  Atomic layer deposition of SiO2 at room temperature using NH3-catalyzed sequential surface reactions , 2000 .

[22]  Seiichi Miyazaki,et al.  Atomic layer growth of silicon by excimer laser induced cryogenic chemical vapor deposition , 1990 .

[23]  Brian E. Thompson,et al.  Monte Carlo simulation of ion transport through rf glow‐discharge sheaths , 1988 .

[24]  H. F. Winters,et al.  Conductance considerations in the reactive ion etching of high aspect ratio features , 1989 .

[25]  Gerold W. Neudeck,et al.  Novel silicon epitaxy for advanced MOSFET devices , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[26]  Kenetsu Yokogawa,et al.  Neutral-Beam-Assisted Etching System for Low-Damage SiO2 Etching of 8-Inch Wafers. , 1996 .

[27]  R. People,et al.  Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructures , 1985 .

[28]  K. Shibahara,et al.  Atomic layer controlled deposition of silicon nitride with self‐limiting mechanism , 1996 .

[29]  S. S. Iyer,et al.  In situ relaxed Si1−xGex epitaxial layers with low threading dislocation densities grown on compliant Si-on-insulator substrates , 1998 .

[30]  S. Nishimatsu,et al.  Sputtering yield and radiation damage by neutral beam bombardment , 1988 .

[31]  L. V. Sokolov,et al.  GeSi films with reduced dislocation density grown by molecular-beam epitaxy on compliant substrates based on porous silicon , 1999 .

[32]  Iwao Nishiyama,et al.  Anisotropic Si(100) etching induced by high translational energy Cl2 molecular beams , 1993 .

[33]  Jun-ichi Nishizawa Molecular layer epitaxy , 1994 .

[34]  Daniel D. Koleske,et al.  Atomic layer epitaxy of Si on Ge(100) using Si2Cl6 and atomic hydrogen , 1994 .

[35]  Kang L. Wang,et al.  High-quality strain-relaxed SiGe alloy grown on implanted silicon–on–insulator substrate , 2000 .

[36]  Subramanian S. Iyer,et al.  Relaxation of SiGe thin films grown on Si/SiO2 substrates , 1994 .

[37]  J. W. Matthews,et al.  Defects in epitaxial multilayers , 1974 .

[38]  Masakiyo Matsumura,et al.  Gas-phase-reaction-controlled atomic-layer-epitaxy of silicon , 1998 .

[39]  K. C. Rajkumar,et al.  Strain accommodation in mismatched layers by molecular beam epitaxy: Introduction of a new compliant substrate technology , 1996 .

[40]  Kenji Aoki,et al.  Silicon molecular layer epitaxy , 1990 .

[41]  Felix Ejeckam,et al.  Dislocation-free InSb grown on GaAs compliant universal substrates , 1997 .

[42]  D. Chidambarrao,et al.  Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[43]  M. Pessa,et al.  Characterization of surface exchange reactions used to grow compound films , 1981 .

[44]  Rajaram Bhat,et al.  Atomic layer epitaxy of device quality GaAs , 1989 .

[45]  Matthew Goeckner,et al.  A source of hyperthermal neutrals for materials processing , 1997 .

[46]  D. J. Economou,et al.  Molecular dynamics simulation of atomic layer etching of silicon , 1995 .

[47]  Kang L. Wang,et al.  Effective compliant substrate for low-dislocation relaxed SiGe growth , 2001, Applied Physics Letters.

[48]  P. D. Agnello,et al.  Growth rate enhancement of heavy n- and p-type doped silicon deposited by atmospheric-pressure chemical vapor deposition at low temperatures , 1993 .

[49]  G. L. Christenson,et al.  Overcoming the pseudomorphic critical thickness limit using compliant substrates , 1994 .

[50]  Subramanian S. Iyer,et al.  New approach to the growth of low dislocation relaxed SiGe material , 1994 .

[51]  G.A. Brown,et al.  Sub-100 nm gate length metal gate NMOS transistors fabricated by a replacement gate process , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[52]  Kevin K. H. Chan,et al.  80 nm poly':'silicon gated n-FETs with ultra-thin Ah03 gate dielectric for ULSI applications , 2000 .

[53]  C. Hu,et al.  Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[54]  Steven M. George,et al.  Atomic layer deposition of tungsten using sequential surface chemistry with a sacrificial stripping reaction , 2000 .

[55]  Y. Mitani,et al.  Buried source and drain (BSD) structure for ultra-shallow junction using selective deposition of highly doped amorphous silicon , 1996, 1996 Symposium on VLSI Technology. Digest of Technical Papers.

[56]  Seiichi Miyazaki,et al.  Digital chemical vapor deposition and etching technologies for semiconductor processing , 1990 .

[57]  Luke J. Mawst,et al.  Experimental test for elastic compliance during growth on glass-bonded compliant substrates , 2000 .

[58]  Keizo Suzuki,et al.  Anisotropic etching of GaAs using a hot Cl2 molecular beam , 1991 .

[59]  D. J. Economou,et al.  Effect of Potential Field on Ion Deflection and Shape Evolution of Trenches during Plasma‐Assisted Etching , 1988 .

[60]  E. Tannenbaum,et al.  Stabilization of silicon surfaces by thermally grown oxides , 1959 .

[61]  W. Shockley The path to the conception of the junction transistor , 1976, IEEE Transactions on Electron Devices.

[62]  Eduard A. Cartier,et al.  High-resolution depth profiling in ultrathin Al2O3 films on Si , 2000 .

[63]  Konstantinos P. Giapis,et al.  Hyperthermal neutral beam etching , 1995 .

[64]  M. Pessa,et al.  A study of ZnTe films grown on glass substrates using an atomic layer evaporation method , 1980 .

[65]  H. Kressel,et al.  The application of heterojunction structures to optical devices , 1975 .

[66]  K. Ng,et al.  The impact of intrinsic series resistance on MOSFET scaling , 1986, IEEE Transactions on Electron Devices.

[67]  Salah M. Bedair,et al.  Atomic layer epitaxy of III‐V binary compounds , 1985 .

[68]  Jeffrey Bokor,et al.  Gate length scaling and threshold voltage control of double-gate MOSFETs , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[69]  Ian V. Mitchell,et al.  Ultrashallow depth profiling using ozone oxidation and HF etching of silicon , 1993 .

[70]  Yasuhiro Yamamoto,et al.  Study of Surface Processes in the Digital Etching of GaAs , 1992 .

[71]  Stella W. Pang,et al.  Hot‐jet etching of Pb, GaAs, and Si , 1986 .

[72]  Felix Ejeckam,et al.  Lattice engineered compliant substrate for defect-free heteroepitaxial growth , 1997 .

[73]  Takashi Meguro,et al.  Crystallographic selective growth of GaAs by atomic layer epitaxy , 1993 .

[74]  Dong-Jin Kim,et al.  Applicability of ALE TiN films as Cu/Si diffusion barriers , 2000 .

[75]  Renshi Sawada,et al.  Reactive–fast‐atom beam etching of GaAs using Cl2 gas , 1989 .

[76]  C. Ozturk,et al.  Low temperature (800/spl deg/C) recessed junction selective silicon-germanium source/drain technology for sub-70 nm CMOS , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[77]  R. Stanley Williams,et al.  Physics and the Information Revolution , 2000 .

[78]  Y. Lo,et al.  Dynamic model for pseudomorphic structures grown on compliant substrates: An approach to extend the critical thickness , 1993 .

[79]  Y. Lo,et al.  New approach to grow pseudomorphic structures over the critical thickness , 1991 .