The gravity dual of Rényi entropy

A remarkable yet mysterious property of black holes is that their entropy is proportional to the horizon area. This area law inspired the holographic principle, which was later realized concretely in gauge-gravity duality. In this context, entanglement entropy is given by the area of a minimal surface in a dual spacetime. However, discussions of area laws have been constrained to entanglement entropy, whereas a full understanding of a quantum state requires Rényi entropies. Here we show that all Rényi entropies satisfy a similar area law in holographic theories and are given by the areas of dual cosmic branes. This geometric prescription is a one-parameter generalization of the minimal surface prescription for entanglement entropy. Applying this we provide the first holographic calculation of mutual Rényi information between two disks of arbitrary dimension. Our results provide a framework for efficiently studying Rényi entropies and understanding entanglement structures in strongly coupled systems and quantum gravity.

[1]  A. Rényi On Measures of Entropy and Information , 1961 .

[2]  A. Rényi On the Foundations of Information Theory , 1965 .

[3]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[4]  J. Bekenstein Black Holes and Entropy , 1973, Jacob Bekenstein.

[5]  S. Hawking,et al.  Action Integrals and Partition Functions in Quantum Gravity , 1977 .

[6]  A. Vilenkin Gravitational Field of Vacuum Domain Walls and Strings , 1981 .

[7]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[8]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[9]  G. Hooft Dimensional Reduction in Quantum Gravity , 1993, gr-qc/9310026.

[10]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[11]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[12]  R. Wald,et al.  Black hole entropy is Noether charge. , 1993, Physical review. D, Particles and fields.

[13]  Stephen W. Hawking,et al.  Particle Creation by Black Holes , 1993, Resonance.

[14]  Susskind,et al.  Black hole entropy in canonical quantum gravity and superstring theory. , 1994, Physical review. D, Particles and fields.

[15]  L. Susskind The world as a hologram , 1994, hep-th/9409089.

[16]  Iyer,et al.  Some properties of the Noether charge and a proposal for dynamical black hole entropy. , 1994, Physical review. D, Particles and fields.

[17]  Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem. , 1993, Physical review letters.

[18]  On black hole entropy. , 1993, Physical review. D, Particles and fields.

[19]  F. Wilczek,et al.  Geometric and renormalized entropy in conformal field theory , 1994, hep-th/9403108.

[20]  H. Osborn,et al.  Implications of Conformal Invariance in Field Theories for General Dimensions , 1993, hep-th/9307010.

[21]  The off-shell black hole , 1993, gr-qc/9312002.

[22]  Jacobson,et al.  Thermodynamics of spacetime: The Einstein equation of state. , 1995, Physical review letters.

[23]  S. Solodukhin,et al.  Description of the Riemannian geometry in the presence of conical defects. , 1995, Physical review. D, Particles and fields.

[24]  D.V.Fursaev,et al.  On the Description of the Riemannian Geometry in the Presence of Conical Defects , 1995, hep-th/9501127.

[25]  Conserved currents and the energy-momentum tensor in conformally invariant theories for general dimensions , 1996, hep-th/9605009.

[26]  A. Polyakov,et al.  Gauge Theory Correlators from Non-Critical String Theory , 1998, hep-th/9802109.

[27]  J. Maldacena The Large N limit of superconformal field theories and supergravity , 1998 .

[28]  E. Witten Anti-de Sitter space and holography , 1998, hep-th/9802150.

[29]  Black Hole Entropy in String Theory , 2001 .

[30]  S. Mathur,et al.  Correlation Functions for M N /S N Orbifolds , 2001 .

[31]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[32]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[33]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[34]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[35]  M. B. Hastings Entropy and entanglement in quantum ground states , 2007 .

[36]  T. Takayanagi,et al.  A covariant holographic entanglement entropy proposal , 2007, 0705.0016.

[37]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[38]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[39]  F. Franchini,et al.  Renyi entropy of the XY spin chain , 2007, 0707.2534.

[40]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[41]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory , 2009, 0905.2069.

[42]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[43]  M. Paulos,et al.  Holographic GB gravity in arbitrary dimensions , 2009, 0911.4257.

[44]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[45]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory: II , 2010, 1011.5482.

[46]  M. Van Raamsdonk,et al.  Building up spacetime with quantum entanglement , 2010 .

[47]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[48]  J. Baez Rényi Entropy and Free Energy , 2011, Entropy.

[49]  R. Myers,et al.  Holographic calculations of Rényi entropy , 2011, 1110.1084.

[50]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[51]  I. Klebanov,et al.  Rényi entropies for free field theories , 2011, 1111.6290.

[52]  D. Fursaev Entanglement Rényi entropies in conformal field theories and holography , 2012, 1201.1702.

[53]  Thomas Hartman Entanglement Entropy at Large Central Charge , 2013, 1303.6955.

[54]  Aitor Lewkowycz,et al.  Generalized gravitational entropy , 2013, 1304.4926.

[55]  T. Nishioka,et al.  Supersymmetric Rényi entropy , 2013, Journal of High Energy Physics.

[56]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[57]  T. Faulkner The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT , 2013, 1303.7221.

[58]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[59]  S. Matsuura,et al.  Prepared for submission to JHEP Holographic Charged Rényi Entropies , 2013 .

[60]  Xi Dong,et al.  Holographic entanglement beyond classical gravity , 2013, 1306.4682.

[61]  A. A. Ocampo Rios,et al.  Measurement of the $ t\overline{t} $ production cross section in the dilepton channel in pp collisions at $ \sqrt{s} $ = 8 TeV , 2013 .

[62]  Bin Chen,et al.  On short interval expansion of Rényi entropy , 2013, 1309.5453.

[63]  S. Matsuura,et al.  Holographic phases of Rényi entropies , 2013, 1306.2640.

[64]  R. Myers,et al.  Holographic Rényi entropies at finite coupling , 2013, 1305.7191.

[65]  Netta Engelhardt,et al.  Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime , 2014, 1408.3203.

[66]  Aitor Lewkowycz,et al.  Rényi entropy, stationarity, and entanglement of the conformal scalar , 2014, 1407.7816.

[67]  Eric Perlmutter Comments on Rényi entropy in AdS3/CFT2 , 2013, 1312.5740.

[68]  Eric Perlmutter A universal feature of CFT Rényi entropy , 2013, 1308.1083.

[69]  L. Alday,et al.  The holographic supersymmetric Rényi entropy in five dimensions , 2014, 1410.0899.

[70]  S. J. Suh,et al.  The gravity duals of modular Hamiltonians , 2014, 1412.8465.

[71]  Wu-zhong Guo,et al.  Holographic entanglement entropy for the most general higher derivative gravity , 2014, 1411.5579.

[72]  S. Datta,et al.  Rényi entropies of free bosons on the torus and holography , 2013, 1311.1218.

[73]  J. Camps Generalized entropy and higher derivative gravity , 2013, 1310.6659.

[74]  Thomas Hartman,et al.  Topological aspects of generalized gravitational entropy , 2014, 1412.7561.

[75]  Xi Dong,et al.  Holographic entanglement entropy for general higher derivative gravity , 2013, 1310.5713.

[76]  B. Safdi,et al.  Rényi entropy and geometry , 2014, 1403.1580.

[77]  Xi Dong,et al.  Holographic reconstruction of general bulk surfaces , 2014, 1406.4889.

[78]  Bin Chen,et al.  Holographic Rényi entropy for CFT with W symmetry , 2013, 1312.5510.

[79]  Aitor Lewkowycz,et al.  Universality in the geometric dependence of Rényi entropy , 2014, 1407.8171.

[80]  S. Matsuura,et al.  Charged Rényi entropies and holographic superconductors , 2014, 1407.5630.

[81]  R. Myers,et al.  Twist operators in higher dimensions , 2014, 1407.6429.

[82]  A. Allais,et al.  Some results on the shape dependence of entanglement and Rényi entropies , 2014, 1407.7249.

[83]  Eric Perlmutter Virasoro conformal blocks in closed form , 2015, 1502.07742.

[84]  William Witczak-Krempa,et al.  Universality of Corner Entanglement in Conformal Field Theories. , 2015, Physical review letters.

[85]  D. Kutasov,et al.  Supersymmetric Renyi entropy in CFT2 and AdS3 , 2015, 1510.08872.

[86]  M. Rispoli,et al.  Measuring entanglement entropy in a quantum many-body system , 2015, Nature.

[87]  R. Myers,et al.  Universal entanglement for higher dimensional cones , 2015, Journal of High Energy Physics.

[88]  M. Headrick,et al.  Rényi entropies, the analytic bootstrap, and 3D quantum gravity at higher genus , 2015, 1503.07111.

[89]  R. Myers,et al.  Universal corner entanglement from twist operators , 2015, 1507.06997.

[90]  Aitor Lewkowycz,et al.  Relative entropy equals bulk relative entropy , 2015, 1512.06431.

[91]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[92]  Xi Dong Shape Dependence of Holographic Rényi Entropy in Conformal Field Theories. , 2016, Physical review letters.

[93]  R. Myers,et al.  Rényi entropy and conformal defects , 2015, 1511.06713.

[94]  Aitor Lewkowycz,et al.  Deriving covariant holographic entanglement , 2016, 1607.07506.

[95]  Xi Dong,et al.  Shape dependence of holographic Rényi entropy in general dimensions , 2016, 1607.07418.

[96]  C. Closset,et al.  N$$ \mathcal{N} $$ = 1 supersymmetric indices and the four-dimensional A-model , 2017, 1707.05774.