Periodicities of FX Markets in Intrinsic Time

This paper utilises advanced methods from Fourier Analysis in order to describe financial ultra-high frequent transaction data. The Lomb-Scargle Fourier Transform is used to take into account the irregularity in spacing in the time-domain. It provides a natural framework for the power spectra of different inhomogeneous time series processes to be easily and quickly estimated,without significant computational effort, in contrast to the common econometric approaches in the finance literature. An event-based approach (intrinsic time), which by its own nature is inhomogeneous in time, is employed using different event thresholds to filter the foreign exchange tick-data leading to a power-law relationship. The calculated spectral density demonstrates that the price process in intrinsic time contains different periodic components, especially in the medium-long term, implying the existence of new stylised facts of ultra-high frequency data in the frequency domain.

[1]  Richard Demille Wyckoff Studies in Tape Reading , 1978 .

[2]  Robert F. Engle,et al.  The Econometrics of Ultra-High Frequency Data , 1996 .

[3]  H P Van Dongen,et al.  A procedure of multiple period searching in unequally spaced time-series with the Lomb-Scargle method. , 1999, Biological rhythm research.

[4]  Howard M. Taylor,et al.  On the Distribution of Stock Price Differences , 1967, Oper. Res..

[5]  Alexandre Dupuis,et al.  The scale of market quakes , 2009 .

[6]  Antony Ware,et al.  Fast Approximate Fourier Transforms for Irregularly Spaced Data , 1998, SIAM Rev..

[7]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[8]  Olivier V. Pictet,et al.  From the bird's eye to the microscope: A survey of new stylized facts of the intra-daily foreign exchange markets , 1997, Finance Stochastics.

[9]  Nikolaus Hautsch,et al.  Order aggressiveness and order book dynamics , 2004 .

[10]  Luc Bauwens,et al.  Département des Sciences Économiques de l'Université catholique de Louvain Modelling Financial High Frequency Data Using Point Processes , 2019 .

[11]  Avanidhar Subrahmanyam,et al.  Market Liquidity and Trading Activity , 2000 .

[12]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[13]  G. L. Bretthorst Generalizing the Lomb-Scargle periodogram—the nonsinusoidal case , 2001 .

[14]  Michael Schulz,et al.  Spectrum: spectral analysis of unevenly spaced paleoclimatic time series , 1997 .

[15]  Rebecca M. Warner,et al.  Spectral Analysis of Time-Series Data , 1998 .

[16]  W. Press,et al.  Fast algorithm for spectral analysis of unevenly sampled data , 1989 .

[17]  M. Păcurar,et al.  Autoregressive Conditional Duration Models in Finance: A Survey of the Theoretical and Empirical Literature , 2008 .

[18]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[19]  R. MacDonald Exchange Rate Economics: Theories and Evidence , 1988 .

[20]  Andréas Heinen,et al.  Multivariate autoregressive modeling of time series count data using copulas , 2007 .

[21]  Nikolaus Hautsch,et al.  Modelling Irregularly Spaced Financial Data , 2004 .

[22]  Wing Lon Ng,et al.  Analysis of ultra-high-frequency financial data using advanced Fourier transforms , 2009 .

[23]  C. Chatfield,et al.  Fourier Analysis of Time Series: An Introduction , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  A. Iacobucci Spectral Analysis for Economic Time Series , 2005 .

[25]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[26]  Neil Shephard,et al.  Dynamics of Trade-by-Trade Price Movements: Decomposition and Models , 1999 .

[27]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[28]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[29]  C. Granger,et al.  Applications of spectral analysis in econometrics , 1983 .

[30]  R. Olsen,et al.  An extensive set of scaling laws and the FX coastline , 2008 .

[31]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[32]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[33]  Richard K. Lyons,et al.  The Microstructure Approach to Exchange Rates , 2001 .