A transition from parabolic to conical shape as a common effect in nearby AGN jets

Observational studies of collimation in jets in active galactic nuclei (AGN) are a key to understanding their formation and acceleration processes. We have performed an automated search for jet shape transitions in a sample of 367 AGN using VLBA data at 15 GHz and 1.4 GHz. This search has found ten out of 29 nearby jets at redshifts z<0.07 with a transition from a parabolic to conical shape, while the full analyzed sample is dominated by distant AGN with a typical z about 1. The ten AGN are UGC00773, NGC1052, 3C111, 3C120, TXS0815-094, Mrk180, PKS1514+00, NGC6251, 3C371, and BL Lac. We conclude that the geometry transition may be a common effect in AGN jets. It can be observed only when sufficient linear resolution is obtained. Supplementing these results with previously reported shape breaks in the nearby AGN 1H0323+342 and M87, we estimate that the break occurs at 10^5-10^6 gravitational radii from the nucleus. We suggest that the jet shape transition happens when the bulk plasma kinetic energy flux becomes equal to the Poynting energy flux, while the ambient medium pressure is assumed to be governed by Bondi accretion. In general, the break point may not coincide with the Bondi radius. The observational data supports our model predictions on the jet acceleration and properties of the break point.

[1]  Y. Murata,et al.  The Two-sided Jet Structures of NGC 1052 at Scales from 300 to 4 × 107 Schwarzschild Radii , 2019, The Astronomical Journal.

[2]  Y. Murata,et al.  The Cygnus A Jet: Parabolic Streamlines up to Kiloparsec Scales , 2019, The Astrophysical Journal.

[3]  F. Mertens,et al.  The TeV-emitting radio galaxy 3C 264 , 2019, Astronomy & Astrophysics.

[4]  L. Gurvits,et al.  M87 black hole mass and spin estimate through the position of the jet boundary shape break , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  A. Tchekhovskoy,et al.  Accelerating AGN jets to parsec scales using general relativistic MHD simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  E. Ros,et al.  MOJAVE. XVII. Jet Kinematics and Parent Population Properties of Relativistically Beamed Radio-loud Blazars , 2019, The Astrophysical Journal.

[7]  R. Blandford,et al.  Relativistic Jets in Active Galactic Nuclei , 2018, 1812.06025.

[8]  A. Lobanov,et al.  Significant core shift variability in parsec-scale jets of active galactic nuclei , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  Y. Kovalev,et al.  Dissecting the AGN Disk–Jet System with Joint VLBI-Gaia Analysis , 2018, The Astrophysical Journal.

[10]  A. Tchekhovskoy,et al.  Magnetic field at a jet base: extreme Faraday rotation in 3C 273 revealed by ALMA , 2018, Astronomy & Astrophysics.

[11]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[12]  K. Wajima,et al.  Collimation, Acceleration, and Recollimation Shock in the Jet of Gamma-Ray Emitting Radio-loud Narrow-line Seyfert 1 Galaxy 1H0323+342 , 2018, The Astrophysical Journal.

[13]  J. A. Zensus,et al.  A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii , 2018, 1804.02198.

[14]  Y. Murata,et al.  Finding Transitions of Physical Condition in Jets from Observations over the Range of 103–109 Schwarzschild Radii in Radio Galaxy NGC 4261 , 2018 .

[15]  V. Fish,et al.  The Global Jet Structure of the Archetypical Quasar 3C 273 , 2018 .

[16]  E. Nokhrina The Correlation between the Total Magnetic Flux and the Total Jet Power , 2017, Front. Astron. Space Sci..

[17]  A. Kiselev,et al.  On the internal structure of relativistic jets collimated by ambient gas pressure , 2017 .

[18]  M. Lister,et al.  MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017 , 2017, 1711.07802.

[19]  C. Boisson,et al.  Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN , 2017, 1705.10556.

[20]  M. Lister,et al.  MOJAVE - XIV. Shapes and opening angles of AGN jets , 2017, 1705.02888.

[21]  T. Krichbaum,et al.  F-GAMMA: variability Doppler factors of blazars from multiwavelength monitoring , 2017, 1701.01452.

[22]  Caltech,et al.  On the black hole mass of the γ-ray emitting narrow-line Seyfert 1 galaxy 1H 0323+342 , 2016, 1609.08002.

[23]  A. Levinson,et al.  Reconfinement of highly magnetized jets: implications for HST-1 in M87 , 2016, 1609.01091.

[24]  Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei , 2016, 1611.04075.

[25]  Y. Y. Kovalev,et al.  VLBI-Gaia offsets favor parsec-scale jet direction in active galactic nuclei , 2016, 1611.02632.

[26]  J. Algaba,et al.  STRUCTURAL TRANSITION IN THE NGC 6251 JET: AN INTERPLAY WITH THE SUPERMASSIVE BLACK HOLE AND ITS HOST GALAXY , 2016, 1610.06351.

[27]  John Salvatier,et al.  PyMC3: Python probabilistic programming framework , 2016 .

[28]  R. Walker,et al.  Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii , 2016, 1608.05063.

[29]  E. Ros,et al.  MOJAVE. XIII. PARSEC-SCALE AGN JET KINEMATICS ANALYSIS BASED ON 19 YEARS OF VLBA OBSERVATIONS AT 15 GHz , 2016, 1603.03882.

[30]  E. Ros,et al.  The stratified two-sided jet of Cygnus A. Acceleration and collimation , 2015, 1509.06250.

[31]  G. Cotter,et al.  New constraints on the structure and dynamics of black hole jets , 2015, 1508.00567.

[32]  A. Lasenby,et al.  polychord: next-generation nested sampling , 2015, 1506.00171.

[33]  A. Broderick,et al.  Inside the Bondi radius of M87 , 2015, 1504.07633.

[34]  Y. Kovalev,et al.  Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei , 2014, 1412.1992.

[35]  A. Tchekhovskoy,et al.  Core shifts, magnetic fields and magnetization of extragalactic jets , 2014, 1410.7310.

[36]  E. Ros,et al.  MOJAVE. XII. ACCELERATION AND COLLIMATION OF BLAZAR JETS ON PARSEC SCALES , 2014, 1410.8502.

[37]  Luis Carrasco,et al.  THE HOST GALAXY OF THE GAMMA-RAY NARROW-LINE SEYFERT 1 GALAXY 1H 0323+342 , 2014, 1409.2518.

[38]  A. Markowitz,et al.  TANAMI monitoring of Centaurus A: The complex dynamics in the inner parsec of an extragalactic jet , 2014, 1407.0162.

[39]  A. Tchekhovskoy,et al.  Dynamically important magnetic fields near accreting supermassive black holes , 2014, Nature.

[40]  M. Cohen,et al.  STUDIES OF THE JET IN BL LACERTAE. I. RECOLLIMATION SHOCK AND MOVING EMISSION FEATURES , 2014, 1404.0976.

[41]  K. I. Kellermann,et al.  MOJAVE. X. PARSEC-SCALE JET ORIENTATION VARIATIONS AND SUPERLUMINAL MOTION IN ACTIVE GALACTIC NUCLEI , 2013, 1308.2713.

[42]  G. Cotter,et al.  Synchrotron and inverse-Compton emission from blazar jets - III. Compton-dominant blazars , 2013, 1303.1182.

[43]  R. Romani,et al.  SPECTROSCOPY OF THE LARGEST EVER γ-RAY-SELECTED BL LAC SAMPLE , 2013, 1301.0323.

[44]  C. Villforth,et al.  Redshift constraints for RGB 0136+391 and PKS 0735+178 from deep optical imaging , 2012, 1209.4755.

[45]  Y. Kovalev,et al.  Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz , 2012, 1205.5559.

[46]  S. Komissarov Central Engines: Acceleration, Collimation and Confinement of Jets , 2012 .

[47]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[48]  Anthony C. S. Readhead,et al.  SPECTROSCOPY OF BROAD-LINE BLAZARS FROM 1LAC , 2012, 1201.0999.

[49]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[50]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[51]  Optical Spectroscopic Atlas of the MOJAVE/2cm AGN Sample , 2011, 1107.3416.

[52]  O. Porth,et al.  SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS , 2011, 1105.4258.

[53]  Cambridge,et al.  Bondi flow from a slowly rotating hot atmosphere , 2011, 1105.0594.

[54]  M. Gurwell,et al.  MULTIWAVELENGTH OBSERVATIONS OF THE GAMMA-RAY BLAZAR PKS 0528+134 IN QUIESCENCE , 2011, 1104.3557.

[55]  K. Sokolovsky,et al.  A VLBA survey of the core shift effect in AGN jets - I. Evidence of dominating synchrotron opacity , 2011, 1103.6032.

[56]  Tod R. Lauer,et al.  THE BLACK HOLE MASS IN M87 FROM GEMINI/NIFS ADAPTIVE OPTICS OBSERVATIONS , 2011, 1101.1954.

[57]  E. Ros,et al.  VLBI detection of the HST-1 feature in the M 87 jet at 2 cm , 2010, 1002.2588.

[58]  E. Ros,et al.  Relativistic beaming and gamma-ray brightness of blazars , 2009, 0911.4924.

[59]  V. Beskin MHD Flows in Compact Astrophysical Objects: Accretion, Winds and Jets , 2009 .

[60]  M. Lister,et al.  Jet opening angles and gamma-ray brightness of AGN , 2009, 0910.1813.

[61]  R. Porcas Radio astrometry with chromatic AGN core positions , 2009, 0909.0933.

[62]  L. Ho,et al.  MAGELLAN SPECTROSCOPY OF LOW-REDSHIFT ACTIVE GALACTIC NUCLEI , 2009, 0909.0054.

[63]  Hongyan Zhou,et al.  Determination of the intrinsic velocity field in the M87 jet , 2009, 0904.1857.

[64]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.

[65]  Y. Lyubarsky ASYMPTOTIC STRUCTURE OF POYNTING-DOMINATED JETS , 2009, 0902.3357.

[66]  Cosmology,et al.  EFFICIENCY OF MAGNETIC TO KINETIC ENERGY CONVERSION IN A MONOPOLE MAGNETOSPHERE , 2009, 0901.4776.

[67]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[68]  S. Komissarov,et al.  Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources , 2008, 0811.1467.

[69]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. V. MULTI-EPOCH VLBA IMAGES , 2009 .

[70]  Stsci,et al.  The jet of Markarian 501 from millions of Schwarzschild radii down to a few hundreds , 2008, 0807.1786.

[71]  R. Shcherbakov Spherically Symmetric Accretion Flows: Minimal Model with Magnetohydrodynamic Turbulence , 2008, 0803.3909.

[72]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[73]  A. Lobanov,et al.  Opacity in compact extragalactic radio sources and its effect on astrophysical and astrometric studies , 2008, 0802.2970.

[74]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[75]  T. Rector,et al.  Extragalactic Jets: Theory and Observation from Radio to Gamma Ray , 2008 .

[76]  Paolo Giommi,et al.  CGRaBS: An All-Sky Survey of Gamma-Ray Blazar Candidates , 2007, 0709.1735.

[77]  S. Komissarov,et al.  Magnetic acceleration of relativistic active galactic nucleus jets , 2007 .

[78]  S. Komissarov,et al.  Magnetic acceleration of relativistic AGN jets , 2007 .

[79]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[80]  V. Beskin,et al.  The effective acceleration of plasma outflow in the paraboloidal magnetic field , 2006 .

[81]  J. McKinney General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems , 2006, astro-ph/0603045.

[82]  M. Gu,et al.  The Jet Power, Radio Loudness, and Black Hole Mass in Radio-loud Active Galactic Nuclei , 2005, astro-ph/0510241.

[83]  M. Cohen,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. XI. SPECTRAL DISTRIBUTIONS , 2014, 1404.0014.

[84]  Roger W. Romani,et al.  A Northern Survey of Gamma-Ray Blazar Candidates , 2005, astro-ph/0503115.

[85]  R. Terlevich,et al.  Group, field and isolated early‐type galaxies – I. Observations and nuclear data , 2004, astro-ph/0411100.

[86]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[87]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004, astro-ph/0403325.

[88]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[89]  M. Eracleous,et al.  Accurate Redshifts and Classifications for 110 Radio-Loud Active Galactic Nuclei , 2003, astro-ph/0309498.

[90]  M. Maia,et al.  Redshift-Distance Survey of Early-Type Galaxies: Spectroscopic Data , 2003, astro-ph/0308357.

[91]  N. Vlahakis,et al.  Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions , 2003, astro-ph/0303482.

[92]  M. Cohen,et al.  The Shroud Around the Twin Radio Jets in NGC 1052 , 2002, astro-ph/0212030.

[93]  O. Padova,et al.  Spectroscopy of BL Lac Objects: new redshifts and mis-identified sources , 2002, astro-ph/0210016.

[94]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[95]  R. McLure,et al.  Measuring the black hole masses of high-redshift quasars , 2002, astro-ph/0204473.

[96]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[97]  N. E. Kassim,et al.  M87 at 90 Centimeters: A Different Picture , 2000, astro-ph/0006150.

[98]  V. Beskin,et al.  On the internal structure of relativistic jets , 2000, astro-ph/0006105.

[99]  D. Schlegel,et al.  Streaming motions of galaxy clusters within 12 000 km s−1 — I. New spectroscopic data , 2000 .

[100]  E. Quataert,et al.  The Cooling Flow to Accretion Flow Transition , 1999, astro-ph/9908199.

[101]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[102]  Michael J. Kurtz,et al.  The Updated Zwicky Catalog (UZC) , 1999, astro-ph/9904265.

[103]  H. Ford,et al.  Nuclear Disks of Gas and Dust in Early-Type Galaxies and the Hunt for Massive Black Holes: Hubble Space Telescope Observations of NGC 6251 , 1998, astro-ph/9811319.

[104]  L. Gurvits,et al.  Sub-Milliarcsecond Imaging of Quasars and Active Galactic Nuclei. IV. Fine-Scale Structure , 2005, astro-ph/0505536.

[105]  C. Lawrence,et al.  Optical Spectra of a Complete Sample of Radio Sources. I. The Spectra , 1996 .

[106]  Paul S. Smith,et al.  Optical spectroscopy and polarization of a new sample of optically bright flat radio spectrum sources , 1996 .

[107]  P. Marziani,et al.  Comparative Analysis of the High- and Low-Ionization Lines in the Broad-Line Region of Active Galactic Nuclei , 1996 .

[108]  H. Tran,et al.  When Is BL Lac Not a BL Lac? , 1995 .

[109]  Frederic H. Chaffee,et al.  The Large Bright Quasar Survey.VI.Quasar Catalog and Survey Parameters , 1995 .

[110]  R. Green,et al.  Luminosity effects and the emission-line properties of quasars with 0 less than z less than 3.8 , 1994 .

[111]  M. Bersanelli,et al.  Optical Spectrophotometry of Blazars , 1994 .

[112]  B. Dingus,et al.  Detection of high-energy gamma rays from quasar PKS 0528 + 134 by EGRET on the Compton Gamma Ray Observatory , 1993 .

[113]  J. Stocke,et al.  The BL Lacertae object PKS 1413 + 135 - Is it within or behind a spiral galaxy? , 1992 .

[114]  R. Pudritz,et al.  Hydromagnetic disk winds in young stellar objects and active galactic nuclei , 1992 .

[115]  C. Steidel,et al.  Emission-line and continuum properties of 92 bright QSOs : luminosity dependence and differences between radio-selected and optically selected samples , 1991 .

[116]  I. Browne,et al.  Optical properties of quasars – I. Observations , 1991 .

[117]  D. Thompson,et al.  SPECTROSCOPY OF RADIO SOURCES FROM THE PARKES 2700 MHZ SURVEY , 1990 .

[118]  C. Norman,et al.  The collimation of magnetized winds , 1989 .

[119]  J. Huchra,et al.  REDSHIFTS OF GALAXIES IN THE WINTER PLANE , 1988 .

[120]  C. Lawrence,et al.  New redshifts of strong radio sources , 1986 .

[121]  B. Wilkes Studies of broad emission line profiles in QSOs - II. Properties of a large, predominantly radio selected sample , 1986 .

[122]  V. Junkkarinen SPECTROPHOTOMETRY OF THE QSO NRAO 530. , 1984 .

[123]  J. Ables,et al.  A study of a representative sample of flat-spectrum radio sources , 1983 .

[124]  Roger D. Blandford,et al.  Relativistic jets as compact radio sources , 1979 .

[125]  B. Peterson,et al.  Redshifts of southern radio sources. VII , 1979 .

[126]  R. Lynds,et al.  Studies of new complete samples of quasi-stellar radio sources from the 4C and Parkes catalogs , 1978 .

[127]  J. Baldwin,et al.  Spectrophotometric observations of Molonglo radio source identifications , 1977 .

[128]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[129]  B. Wills,et al.  Spectroscopy of 206 QSO candidates and radio galaxies , 1976 .

[130]  B. Wills,et al.  Spectroscopy of objects near Texas radio-source positions , 1974 .

[131]  E. Burbidge,et al.  Spectroscopic observations of objects identified with radio sources. , 1974 .