Dynamic regulation of the structure and functions of integrin adhesions.

[1]  P. Frankel,et al.  p130Cas: a key signalling node in health and disease. , 2013, Cellular signalling.

[2]  Kristopher E Kubow,et al.  Reducing background fluorescence reveals adhesions in 3D matrices , 2012, Nature Cell Biology.

[3]  Tamar Geiger,et al.  Opening the floodgates: proteomics and the integrin adhesome. , 2012, Current opinion in cell biology.

[4]  D. Coombs,et al.  Mechanical force regulates integrin turnover in Drosophila in vivo , 2012, Nature Cell Biology.

[5]  Katerina M. Vakaloglou,et al.  Functional analysis of parvin and different modes of IPP-complex assembly at integrin sites during Drosophila development , 2012, Journal of Cell Science.

[6]  W. Huck,et al.  Extracellular-matrix tethering regulates stem-cell fate. , 2012, Nature materials.

[7]  James Castracane,et al.  The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. , 2012, Biomaterials.

[8]  G. Meacci,et al.  Cells test substrate rigidity by local contractions on submicrometer pillars , 2012, Proceedings of the National Academy of Sciences.

[9]  Margaret L. Gardel,et al.  Tension is required but not sufficient for focal adhesion maturation without a stress fiber template , 2012, The Journal of cell biology.

[10]  D. Webb,et al.  Faculty Opinions recommendation of Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. , 2011 .

[11]  M. Sheetz,et al.  Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation , 2011, Proceedings of the National Academy of Sciences.

[12]  Z. Kam,et al.  Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing , 2011, Nature Cell Biology.

[13]  Miguel Vicente-Manzanares,et al.  Adhesion dynamics at a glance , 2011, Journal of Cell Science.

[14]  Hanry Yu,et al.  Mechanotransduction In Vivo by Repeated Talin Stretch-Relaxation Events Depends upon Vinculin , 2011, PLoS biology.

[15]  T. Wight,et al.  The extracellular matrix: an active or passive player in fibrosis? , 2011, American journal of physiology. Gastrointestinal and liver physiology.

[16]  P. Timpson,et al.  Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. , 2011, Cancer cell.

[17]  Nicola Elvassore,et al.  Role of YAP/TAZ in mechanotransduction , 2011, Nature.

[18]  B. Geiger,et al.  Actomyosin-generated tension controls the molecular kinetics of focal adhesions , 2011, Journal of Cell Science.

[19]  Benjamin Geiger,et al.  Molecular architecture and function of matrix adhesions. , 2011, Cold Spring Harbor perspectives in biology.

[20]  Katerina M. Vakaloglou,et al.  A central multifunctional role of integrin-linked kinase at muscle attachment sites , 2011, Journal of Cell Science.

[21]  Suliana Manley,et al.  A role for actin arcs in the leading-edge advance of migrating cells , 2011, Nature Cell Biology.

[22]  J. Yates,et al.  Analysis of the myosinII-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation , 2011, Nature Cell Biology.

[23]  H. Schiller,et al.  Quantitative proteomics of the integrin adhesome show a myosin II‐dependent recruitment of LIM domain proteins , 2011, EMBO reports.

[24]  Mark Schvartzman,et al.  Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. , 2011, Nano letters.

[25]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[26]  D. Montell,et al.  Tissue elongation requires oscillating contractions of a basal actomyosin network , 2010, Nature Cell Biology.

[27]  J. Rasko,et al.  Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells , 2010, Nature Biotechnology.

[28]  B. Geiger,et al.  Frontiers of microscopy-based research into cell-matrix adhesions. , 2010, Current opinion in cell biology.

[29]  Benjamin Geiger,et al.  Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography , 2010, Nature Cell Biology.

[30]  Pere Roca-Cusachs,et al.  Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. , 2010, Developmental cell.

[31]  H. Schiller,et al.  The kindlins at a glance , 2010, Journal of Cell Science.

[32]  Christopher S. Chen,et al.  Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics , 2010, Nature.

[33]  Stephanie I. Fraley,et al.  A distinctive role for focal adhesion proteins in three-dimensional cell motility , 2010, Nature Cell Biology.

[34]  Benjamin Geiger,et al.  The switchable integrin adhesome , 2010, Journal of Cell Science.

[35]  Erin Rericha,et al.  Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation , 2010, The Journal of cell biology.

[36]  V. Barr,et al.  Interference Reflection Microscopy , 2009, Current protocols in cell biology.

[37]  B. Geiger,et al.  The heel and toe of the cell's foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. , 2009, Cell motility and the cytoskeleton.

[38]  Christopher S. Chen,et al.  Faculty Opinions recommendation of Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. , 2009 .

[39]  Pere Roca-Cusachs,et al.  Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction , 2009, Proceedings of the National Academy of Sciences.

[40]  Adam Byron,et al.  Proteomic Analysis of Integrin-Associated Complexes Identifies RCC2 as a Dual Regulator of Rac1 and Arf6 , 2009, Science Signaling.

[41]  Gaudenz Danuser,et al.  Coordination of Rho GTPase activities during cell protrusion , 2009, Nature.

[42]  Viola Vogel,et al.  Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. , 2009, Current opinion in cell biology.

[43]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[44]  J. Klafter,et al.  A Role for the Juxtamembrane Cytoplasm in the Molecular Dynamics of Focal Adhesions , 2009, PloS one.

[45]  R. Fässler,et al.  Loss of Kindlin-1 Causes Skin Atrophy and Lethal Neonatal Intestinal Epithelial Dysfunction , 2008, PLoS genetics.

[46]  Guenter P. Resch,et al.  Clustering of VASP actively drives processive, WH2 domain‐mediated actin filament elongation , 2008, The EMBO journal.

[47]  Christopher S. Chen Mechanotransduction – a field pulling together? , 2008, Journal of Cell Science.

[48]  Jean-Jacques Meister,et al.  Comparative Dynamics of Retrograde Actin Flow and Focal Adhesions: Formation of Nascent Adhesions Triggers Transition from Fast to Slow Flow , 2008, PloS one.

[49]  Miguel Vicente-Manzanares,et al.  Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner , 2008, Nature Cell Biology.

[50]  R. Fässler,et al.  Kindlin-2 controls bidirectional signaling of integrins. , 2008, Genes & development.

[51]  Ning Wang,et al.  Rapid signal transduction in living cells is a unique feature of mechanotransduction , 2008, Proceedings of the National Academy of Sciences.

[52]  J. Qin,et al.  Kindlin-2 (Mig-2): a co-activator of β3 integrins , 2008, The Journal of cell biology.

[53]  B. Nieswandt,et al.  Kindlin-3 is essential for integrin activation and platelet aggregation , 2008, Nature Medicine.

[54]  B. Geiger,et al.  Vinculin controls focal adhesion formation by direct interactions with talin and actin , 2007, The Journal of cell biology.

[55]  Kenneth M. Yamada,et al.  Cell–matrix adhesion , 2007, Journal of cellular physiology.

[56]  Enrico Gratton,et al.  Paxillin Dynamics Measured during Adhesion Assembly and Disassembly by Correlation Spectroscopy , 2007, Biophysical journal.

[57]  S. Itzkovitz,et al.  Functional atlas of the integrin adhesome , 2007, Nature Cell Biology.

[58]  Benjamin Geiger,et al.  Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. , 2007, Biophysical journal.

[59]  Manuel Théry,et al.  Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity , 2006, Proceedings of the National Academy of Sciences.

[60]  R. Milo,et al.  A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions , 2006, Journal of Cell Science.

[61]  Michael P. Sheetz,et al.  Force Sensing by Mechanical Extension of the Src Family Kinase Substrate p130Cas , 2006, Cell.

[62]  Adam Byron,et al.  Integrin ligands at a glance , 2006, Journal of Cell Science.

[63]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[64]  A. Besser,et al.  Force-induced adsorption and anisotropic growth of focal adhesions. , 2006, Biophysical journal.

[65]  P. Lappalainen,et al.  Stress fibers are generated by two distinct actin assembly mechanisms in motile cells , 2006, The Journal of cell biology.

[66]  Michael P. Sheetz,et al.  Rigidity Sensing at the Leading Edge through αvβ3 Integrins and RPTPα , 2006 .

[67]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[68]  E. Avizienyte,et al.  Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. , 2005, Current opinion in cell biology.

[69]  Tom Shemesh,et al.  Focal adhesions as mechanosensors: a physical mechanism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  T. Stradal,et al.  Vinculin acts as a sensor in lipid regulation of adhesion-site turnover , 2005, Journal of Cell Science.

[71]  S. Brodie,et al.  Loss of Synchronized Retinal Phagocytosis and Age-related Blindness in Mice Lacking αvβ5 Integrin , 2004, The Journal of experimental medicine.

[72]  G. Danuser,et al.  Two Distinct Actin Networks Drive the Protrusion of Migrating Cells , 2004, Science.

[73]  L. Addadi,et al.  Hierarchical assembly of cell-matrix adhesion complexes. , 2004, Biochemical Society transactions.

[74]  Z. Kam,et al.  Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells , 2003, Journal of Cell Science.

[75]  Minsoo Kim,et al.  Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins , 2003, Science.

[76]  Neil O. Carragher,et al.  A Novel Role for FAK as a Protease-Targeting Adaptor Protein Regulation by p42 ERK and Src , 2003, Current Biology.

[77]  H. Feiler,et al.  Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. , 2003, American journal of human genetics.

[78]  M. Beckerle,et al.  Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes , 2003, Development.

[79]  D. Bar-Sagi,et al.  Redox-dependent downregulation of Rho by Rac , 2003, Nature Cell Biology.

[80]  Robert A. H. White,et al.  Talin is essential for integrin function in Drosophila. , 2002, Developmental cell.

[81]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[82]  N. Brown,et al.  Integrins in development: moving on, responding to, and sticking to the extracellular matrix. , 2002, Developmental cell.

[83]  D. Sheppard,et al.  Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling , 2002, The Journal of cell biology.

[84]  A. Aszódi,et al.  Functional consequences of integrin gene mutations in mice. , 2001, Circulation research.

[85]  Benjamin Geiger,et al.  Focal Contacts as Mechanosensors Externally Applied Local Mechanical Force Induces Growth of Focal Contacts by an Mdia1-Dependent and Rock-Independent Mechanism , 2001 .

[86]  M Negishi,et al.  RhoA Inhibits the Nerve Growth Factor-induced Rac1 Activation through Rho-associated Kinase-dependent Pathway* , 2001, The Journal of Biological Chemistry.

[87]  J. Woodgett,et al.  Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[88]  C. G. Zervas,et al.  Drosophila Integrin-Linked Kinase Is Required at Sites of Integrin Adhesion to Link the Cytoskeleton to the Plasma Membrane , 2001, The Journal of cell biology.

[89]  R. Fässler,et al.  Insights into extracellular matrix functions from mutant mouse models. , 2000, Experimental cell research.

[90]  D. Moerman,et al.  The UNC-112 Gene in Caenorhabditis elegansEncodes a Novel Component of Cell–Matrix Adhesion Structures Required for Integrin Localization in the Muscle Cell Membrane , 2000, The Journal of cell biology.

[91]  Benjamin Geiger,et al.  Dynamics and segregation of cell–matrix adhesions in cultured fibroblasts , 2000, Nature Cell Biology.

[92]  Kenneth M. Yamada,et al.  Integrin Dynamics and Matrix Assembly , 2000, The Journal of cell biology.

[93]  Robert V Farese,et al.  Normal Development, Wound Healing, and Adenovirus Susceptibility in β5-Deficient Mice , 2000, Molecular and Cellular Biology.

[94]  S. Craig,et al.  Functional genomic analysis reveals the utility of the I/LWEQ module as a predictor of protein:actin interaction. , 1999, Biochemical and biophysical research communications.

[95]  Sheila M. Thomas,et al.  Binding of paxillin to α4 integrins modifies integrin-dependent biological responses , 1999, Nature.

[96]  Irina Kaverina,et al.  Microtubule Targeting of Substrate Contacts Promotes Their Relaxation and Dissociation , 1999, The Journal of cell biology.

[97]  K. Rottner,et al.  Interplay between Rac and Rho in the control of substrate contact dynamics , 1999, Current Biology.

[98]  Y. Wang,et al.  Cell locomotion and focal adhesions are regulated by substrate flexibility. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Daniel Choquet,et al.  Extracellular Matrix Rigidity Causes Strengthening of Integrin–Cytoskeleton Linkages , 1997, Cell.

[100]  T. Mak,et al.  LFA-1-deficient mice show normal CTL responses to virus but fail to reject immunogenic tumor , 1996, The Journal of experimental medicine.

[101]  R. Fässler,et al.  Consequences of lack of beta 1 integrin gene expression in mice. , 1995, Genes & development.

[102]  C. Nobes,et al.  Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia , 1995, Cell.

[103]  S. Craig,et al.  F-actin binding site masked by the intramolecular association of vinculin head and tail domains , 1995, Nature.

[104]  S. Ogawa,et al.  A novel signaling molecule, p130, forms stable complexes in vivo with v‐Crk and v‐Src in a tyrosine phosphorylation‐dependent manner. , 1994, The EMBO journal.

[105]  M. Wilcox Genetic analysis of the Drosophila PS integrins. , 1990, Cell differentiation and development : the official journal of the International Society of Developmental Biologists.

[106]  T. Volk,et al.  A role for integrin in the formation of sarcomeric cytoarchitecture , 1990, Cell.

[107]  D. Brower,et al.  Requirement for integrins during Drosophila wing development , 1989, Nature.

[108]  M. Wilcox,et al.  The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachments , 1987, Cell.

[109]  Richard O. Hynes,et al.  Integrins: A family of cell surface receptors , 1987, Cell.

[110]  M. Beckerle,et al.  Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage , 1986, Nature.

[111]  L. Rohrschneider Adhesion plaques of Rous sarcoma virus-transformed cells contain the src gene product. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[112]  J. Feramisco,et al.  Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin , 1980, Cell.

[113]  B. Geiger A 130K protein from chicken gizzard: Its localization at the termini of microfilament bundles in cultured chicken cells , 1979, Cell.

[114]  W. Birchmeier,et al.  In vivo distribution and turnover of fluorescently labeled actin microinjected into human fibroblasts. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[115]  I. Singer The fibronexus: a transmembrane association of fibronectin-containing fibers and bundles of 5 nm microfilaments in hamster and human fibroblasts , 1979, Cell.

[116]  D. Rees,et al.  Mechanisms of cellular adhesion. IV. Role of serum glycoproteins in fibroblast spreading on glass. , 1979, Journal of cell science.

[117]  R. Hynes,et al.  Relationships between fibronectin (LETS protein) and actin , 1978, Cell.

[118]  S. Singer,et al.  TRANSMEMBRANE LINKAGE OF FIBRONECTIN TO INTRACELLULAR ACTIN‐CONTAINING FILAMENTS IN CULTURED HUMAN FIBROBLASTS * , 1978, Annals of the New York Academy of Sciences.

[119]  J. Heath,et al.  Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. , 1978, Journal of cell science.

[120]  C. Lloyd,et al.  Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins , 1977, Nature.

[121]  C. S. Izzard,et al.  Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. , 1976, Journal of cell science.

[122]  M. Abercrombie,et al.  Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. , 1975, Experimental cell research.

[123]  A. Harris Location of cellular adhesions to solid substrata. , 1973, Developmental biology.

[124]  J. Revel,et al.  Electronmicroscope investigations of the underside of cells in culture. , 1973, Experimental cell research.

[125]  M. Abercrombie,et al.  The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. , 1971, Experimental cell research.

[126]  C. O'neill,et al.  Anchorage and growth regulation in normal and virus‐transformed cells , 1968, International journal of cancer.

[127]  R. Rappaport,et al.  An analysis of cytokinesis in cultured newt cells. , 1968, The Journal of experimental zoology.

[128]  A. S. G. Curtis,et al.  THE MECHANISM OF ADHESION OF CELLS TO GLASS , 1964, The Journal of cell biology.

[129]  K. Sanford,et al.  Polyoma virus and production of malignancy in vitro. , 1961, Journal of the National Cancer Institute.

[130]  H. Temin,et al.  Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. , 1958, Virology.

[131]  M. Abercrombie,et al.  Invasiveness of Sarcoma Cells , 1954, Nature.

[132]  F. Algard Morphology and migratory behavior of embryonic pigment cells studied by phase microscopy , 1953 .

[133]  R. Chambers,et al.  Micro-Operations on Cells in Tissue Cultures , 1931 .

[134]  H. B. Goodrich CELL BEHAVIOR IN TISSUE CULTURES , 1924 .

[135]  Warren H. Lewis,et al.  The adhesive quality of cells , 1922 .

[136]  A. Weinstein,et al.  Coincidence of Crossing over in DROSOPHILA MELANOGASTER (AMPELOPHILA). , 1918, Genetics.

[137]  R G Harrison,et al.  ON THE STEREOTROPISM OF EMBRYONIC CELLS. , 1911, Science.

[138]  P. Rous A SARCOMA OF THE FOWL TRANSMISSIBLE BY AN AGENT SEPARABLE FROM THE TUMOR CELLS , 1911, The Journal of experimental medicine.

[139]  J. Worthington,et al.  TGFβ: a sleeping giant awoken by integrins. , 2011, Trends in biochemical sciences.

[140]  B. Geiger,et al.  Environmental sensing through focal adhesions , 2009, Nature Reviews Molecular Cell Biology.

[141]  T. Wecker,et al.  Substrate rigidity modulates cell matrix interactions and protein expression in human trabecular meshwork cells. , 2008, Investigative ophthalmology & visual science.

[142]  Micah Dembo,et al.  Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. , 2007, The international journal of biochemistry & cell biology.

[143]  M. Sheetz,et al.  Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. , 2006, Biophysical journal.

[144]  Kenneth M. Yamada,et al.  Integrin Dynamics and Matrix Assembly : Tensin-dependent Translocation of a 5 b 1 Integrins Promotes Early Fibronectin Fibrillogenesis , 2000 .

[145]  C. Turner,et al.  Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. , 1988, Annual review of cell biology.

[146]  J. Thiery,et al.  Cell migration in the vertebrate embryo: role of cell adhesion and tissue environment in pattern formation. , 1985, Annual review of cell biology.

[147]  J. Sanes Roles of extracellular matrix in neural development. , 1983, Annual review of physiology.