Semi-linear wave equations with effective damping

AbstractThe authors study the Cauchy problem for the semi-linear damped wave equation $$u_{tt} - \Delta u + b\left( t \right)u_t = f\left( u \right), u\left( {0,x} \right) = u_0 \left( x \right), u_t \left( {0,x} \right) = u_1 \left( x \right)$$ in any space dimension n ≥ 1. It is assumed that the time-dependent damping term b(t) > 0 is effective, and in particular tb(t) → ∞ as t → ∞. The global existence of small energy data solutions for |f(u)| ≈ |u|p in the supercritical case of $$p > \tfrac{2} {n}$$ and $$p \leqslant \tfrac{n} {{n - 2}}$$ for n ≥ 3 is proved.

[1]  Qi S. Zhang A blow-up result for a nonlinear wave equation with damping: The critical case , 2001 .

[2]  M. D’Abbicco,et al.  A class of dissipative wave equations with time-dependent speed and damping , 2013 .

[3]  Masahito Ohta,et al.  Critical exponents for semilinear dissipative wave equations in RN , 2002 .

[4]  Kenji Nishihara,et al.  Decay Properties for the Damped Wave Equation with Space Dependent Potential and Absorbed Semilinear Term , 2010 .

[5]  Jens Wirth,et al.  Wave equations with time-dependent dissipation II. Effective dissipation , 2006 .

[6]  Kenji Nishihara,et al.  Asymptotic Behavior of Solutions to the Semilinear Wave Equation with Time-dependent Damping , 2011 .

[7]  J. Wirth Asymptotic properties of solutions to wave equations with time-dependent dissipation , 2004 .

[8]  R. Ikehata,et al.  Decay estimates of solutions for dissipative wave equations in R^N with lower power nonlinearities , 2004 .

[9]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[10]  Kosuke Ono,et al.  Existence of global solutions to the Cauchy problem for the semilinear dissipative wave equations , 1993 .

[11]  M. D’Abbicco,et al.  A Modified Test Function Method for Damped Wave Equations , 2013 .

[12]  Kenji Nishihara,et al.  Critical exponent for the semilinear wave equation with time-dependent damping , 2012 .

[13]  M. D’Abbicco,et al.  Hyperbolic-like estimates for higher order equations , 2012 .

[14]  K. Tanizawa,et al.  Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data , 2005 .

[15]  A. Matsumura,et al.  On the Asymptotic Behavior of Solutions of Semi-linear Wave Equations , 1976 .

[16]  Xinfu Li Critical exponent for semilinear wave equation with critical potential , 2013 .

[17]  Ryo Ikehata,et al.  Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential , 2009 .

[18]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[19]  B. Yordanov,et al.  Critical Exponent for a Nonlinear Wave Equation with Damping , 2000 .