Off‐shell Amplitudes in Superstring Theory

Computing the renormalized masses and S‐matrix elements in string theory, involving states whose masses are not protected from quantum corrections, requires defining off‐shell amplitude with certain factorization properties. While in the bosonic string theory one can in principle construct such an amplitude from string field theory, there is no fully consistent field theory for type II and heterotic string theory. In this paper we give a practical construction of off‐shell amplitudes satisfying the desired factorization property using the formalism of picture changing operators. We describe a systematic procedure for dealing with the spurious singularities of the integration measure that we encounter in superstring perturbation theory. This procedure is also useful for computing on‐shell amplitudes, as we demonstrate by computing the effect of Fayet‐Iliopoulos D‐terms in four dimensional heterotic string theory compactifications using this formalism.

[1]  E. Witten The Feynman iε in string theory , 2015 .

[2]  A. Sen Gauge invariant 1PI effective superstring field theory: inclusion of the Ramond sector , 2015, 1501.00988.

[3]  A. Sen Gauge invariant 1PI effective action for superstring field theory , 2014, 1411.7478.

[4]  M. Schnabl Noncommutative Geometry and String Field Theory , 2014 .

[5]  A. Sen,et al.  String perturbation theory around dynamically shifted vacuum , 2014, 1404.6254.

[6]  E. Witten,et al.  Supersymmetry breaking effects using the pure spinor formalism of the superstring , 2014, 1404.5346.

[7]  E. D'hoker,et al.  Topics in Two-Loop Superstring Perturbation Theory , 2014, 1403.5494.

[8]  I. Sachs,et al.  NS-NS sector of closed superstring field theory , 2014, 1403.0940.

[9]  A. Sen,et al.  Mass renormalization in string theory: general states , 2014, 1401.7014.

[10]  H. Kunitomo The Ramond sector of heterotic string field theory , 2013, 1312.7197.

[11]  Y. Okawa,et al.  From the Berkovits formulation to the Witten formulation in open superstring field theory , 2013, 1312.1677.

[12]  A. Sen,et al.  Mass renormalization in string theory: special states , 2013, 1311.1257.

[13]  E. Witten,et al.  Super Atiyah classes and obstructions to splitting of supermoduli space , 2014, 1404.6257.

[14]  I. Sachs,et al.  Resolving Witten’s superstring field theory , 2013, 1312.2948.

[15]  E. Witten The Feynman iε in string theory , 2013, Journal of High Energy Physics.

[16]  E. D'hoker,et al.  Two-loop vacuum energy for Calabi–Yau orbifold models ☆ , 2013, 1307.1749.

[17]  E. Witten Notes On Holomorphic String And Superstring Theory Measures Of Low Genus , 2013, 1306.3621.

[18]  E. Witten,et al.  Supermoduli Space Is Not Projected , 2013, 1304.7798.

[19]  E. Witten,et al.  More On Superstring Perturbation Theory , 2013 .

[20]  E. Witten More On Superstring Perturbation Theory: An Overview Of Superstring Perturbation Theory Via Super Riemann Surfaces , 2013, 1304.2832.

[21]  B. Jurčo,et al.  Type II superstring field theory: geometric approach and operadic description , 2013, 1303.2323.

[22]  E. Witten Superstring Perturbation Theory Revisited , 2012, 1209.5461.

[23]  Y. Okawa,et al.  Open superstring field theory I: gauge fixing, ghost structure, and propagator , 2012, 1201.1761.

[24]  E. D'hoker,et al.  Two-Loop Superstrings. VII. Cohomology of Chiral Amplitudes , 2007, 0711.4314.

[25]  L. Rastelli,et al.  The off-shell Veneziano amplitude in Schnabl gauge , 2007, 0708.2591.

[26]  E. D'hoker,et al.  Two-loop superstrings V Gauge slice independence of the N-point function , 2005, hep-th/0501196.

[27]  Y. Okawa,et al.  WZW-like action for heterotic string field theory , 2004, hep-th/0409018.

[28]  Y. Okawa,et al.  Heterotic string field theory , 2004, hep-th/0406212.

[29]  E. D'hoker,et al.  Two-loop superstrings III: Slice independence and absence of ambiguities , 2001, hep-th/0111016.

[30]  E. D'hoker,et al.  Two-loop superstrings.: I. Main formulas , 2001, hep-th/0110247.

[31]  N. Berkovits The Ramond Sector of Open Superstring Field Theory , 2001, hep-th/0109100.

[32]  A. Belopolsky Picture changing operators in supergeometry and superstring theory , 1997, hep-th/9706033.

[33]  A. Belopolsky New Geometrical Approach to Superstrings , 1997, hep-th/9703183.

[34]  A. Belopolsky De Rham cohomology of the supermanifolds and superstring BRST cohomology , 1996, hep-th/9609220.

[35]  N. Berkovits Super-Poincaré invariant superstring field theory , 1995, hep-th/9503099.

[36]  B. Zwiebach Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.

[37]  A. Sen,et al.  Picture changing operators in closed fermionic string field theory , 1992, hep-th/9202087.

[38]  T. Kugo,et al.  Nonpolynomial closed string field theory: Action and its gauge invariance , 1990 .

[39]  A. Morozov A straightforward proof of Lechtenfeld's formula for the β, γ-correlator , 1990 .

[40]  O. Lechtenfeld Superconformal ghost correlations on Riemann surfaces , 1989 .

[41]  K. Suehiro,et al.  Non-polynomial closed string field theory , 1989 .

[42]  Nelson Covariant insertion of general vertex operators. , 1989, Physical review letters.

[43]  B. Zwiebach,et al.  Closed String Field Theory from Polyhedra , 1989 .

[44]  P. Nelson,et al.  Fermionic Strings in the Operator Formalism , 1988 .

[45]  J. Atick,et al.  Some global issues in string perturbation theory , 1988 .

[46]  J. Polchinski Factorization of Bosonic String Amplitudes , 1988 .

[47]  G. Moore,et al.  Strings in the operator formalism , 1988 .

[48]  Michael B. Green,et al.  Contact Interactions in Superstring Theory , 1988 .

[49]  J. Atick,et al.  An Ambiguity in Fermionic String Perturbation Theory , 1988 .

[50]  J. Atick,et al.  Two Loop Dilaton Tadpole Induced by Fayet-Iliopoulos D-Terms In Compactified Heterotic String Theories* , 1988 .

[51]  H. Verlinde,et al.  LECTURES ON STRING PERTURBATION THEORY , 1988 .

[52]  C. Vafa Conformal theories and punctured surfaces , 1987 .

[53]  H. Verlinde,et al.  Multiloop calculations in covariant superstring theory , 1987 .

[54]  C. Vafa Operator formulation on Riemann surfaces , 1987 .

[55]  P. Nelson,et al.  Semi-Off-Shell String Amplitudes , 1987 .

[56]  M. Dine,et al.  F Terms and d Terms in String Theory , 1987 .

[57]  J. Atick,et al.  String calculation of fayet-iliopoulos D-terms in arbitrary supersymmetric compactifications☆ , 1987 .

[58]  H. Verlinde,et al.  Chiral Bosonization, Determinants and the String Partition Function , 1987 .

[59]  E. Witten,et al.  Fayet-Iliopoulos terms in string theory , 1987 .

[60]  Moore,et al.  CATOPTRIC TADPOLES * , 1987 .

[61]  E. Witten Interacting field theory of open superstrings , 1986 .

[62]  Edward Witten,et al.  Non-commutative geometry and string field theory , 1986 .

[63]  P. Nelson,et al.  An off-shell propagator for string theory , 1986 .

[64]  S. Shenker,et al.  Conformal invariance, supersymmetry and string theory , 1986 .