MarsSI: Martian surface data processing information system

Abstract MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/ ) is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007–2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

[1]  A. McEwen,et al.  Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) , 2007 .

[2]  S. Debei,et al.  Geomorphology of the Imhotep region on comet 67P/Churyumov-Gerasimenko from OSIRIS observations , 2015 .

[3]  Nicolas Altobelli,et al.  Thermal observations of Saturn's main rings by Cassini CIRS: Phase, emission and solar elevation dependence , 2008 .

[4]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[5]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[6]  John F. Mustard,et al.  Most Mars minerals in a nutshell: Various alteration phases formed in a single environment in Noctis Labyrinthus , 2012 .

[7]  Roberto Orosei,et al.  Radar Soundings of the Subsurface of Mars , 2005, Science.

[8]  J. Anderson,et al.  Modernization of the Integrated Software for Imagers and Spectrometers , 2004 .

[9]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[10]  L. Edwards,et al.  Context Camera Investigation on board the Mars Reconnaissance Orbiter , 2007 .

[11]  M. S. Bailen,et al.  Using the PDS Planetary Image Locator Tool (PILOT) to Investigate Small Bodies , 2017 .

[12]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[13]  Paolo Giommi,et al.  MATISSE: A novel tool to access, visualize and analyse data from planetary exploration missions , 2016 .

[14]  B. Jai,et al.  The Mars reconnaissance orbiter mission , 2005, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[15]  A. McEwen,et al.  Ultrahigh resolution topographic mapping of Mars with MRO HiRISE stereo images: Meter‐scale slopes of candidate Phoenix landing sites , 2008 .

[16]  Nicolas Thomas,et al.  Color imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE) , 2010 .

[17]  S. Dickenshied,et al.  JMARS - A Planetary GIS , 2009 .

[18]  M. Broxton,et al.  The Ames Stereo Pipeline: Automated 3D Surface Reconstruction from Orbital Imagery , 2008 .

[19]  Wlodek Kofman,et al.  Surface echo reduction by clutter simulation, application to the Marsis data , 2009, 2009 IEEE Radar Conference.

[20]  Patrick C. McGuire,et al.  An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data , 2009, 0903.3672.

[21]  Dieter Kolbe Dss Mars Express: Evolution towards an affordable European Mars Mission (Ref. A-5, (082)) , 1999 .

[22]  Randolph L. Kirk,et al.  JIGSAW: THE ISIS3 BUNDLE ADJUSTMENT FOR EXTRATERRESTRIAL PHOTOGRAMMETRY , 2012 .

[23]  R. Marco Figuera,et al.  Online characterization of planetary surfaces: PlanetServer, an open-source analysis and visualization tool , 2017, ArXiv.

[24]  P. Fernique,et al.  VESPA: a community-driven Virtual Observatory in Planetary Science , 2016, 1705.09727.

[25]  Nicolas Altobelli,et al.  Infrared observations of Saturn's rings by Cassini CIRS : Phase angle and local time dependence , 2008 .

[26]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[27]  Noel Gorelick,et al.  Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi‐spectral data , 2011 .

[28]  G. Schwarze,et al.  The high-resolution stereo camera ( HRSC ) experiment on Mars Express : Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[29]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[30]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars investigation and data set from the Mars Reconnaissance Orbiter's primary science phase , 2009 .

[31]  Raymond E. Arvidson,et al.  2001 Mars Odyssey Mission Summary , 2004 .

[32]  R. Phillips,et al.  SHARAD: The MRO 2005 shallow radar , 2004 .

[33]  Brigitte Gondet,et al.  PSUP: A Planetary SUrface Portal , 2018 .

[34]  R. Jaumann,et al.  HRSC: the High Resolution Stereo Camera of Mars Express , 2004 .

[35]  Glenn E. Cunningham Mars global surveyor mission , 1996 .

[36]  Christophe Delacourt,et al.  High‐resolution digital elevation models derived from Viking Orbiter images: Method and comparison with Mars Orbiter Laser Altimeter Data , 2001 .

[37]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[38]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[39]  Christian Heipke,et al.  The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites , 2016 .

[40]  David E. Smith,et al.  A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera , 2015 .