A-optimal and D-optimal censoring plans in progressively Type-II right censored order statistics

We study how the marginal distribution and Fisher information matrix of progressively Type-II right censored order statistics change when the progressive censoring plan changes. We consider the missing information and its connection with Fisher information matrix to determine the A-optimal and D-optimal plans in multiparameter case. We provide a simple expression and a simple way of determining an optimal censoring plan among a class of one-step censoring plans. Finally we give examples to illustrate results.

[1]  Sangun Park,et al.  On the Fisher Information in Multiply Censored and Progressively Censored Data , 2004 .

[2]  Shuo-Jye Wu,et al.  On estimating parameters of a progressively censored lognormal distribution , 2015 .

[3]  Liang Wang Optimal interval estimation for a family of lower truncated distribution under progressive censoring , 2015, J. Comput. Appl. Math..

[4]  Debasis Kundu,et al.  Inference and optimal censoring schemes for progressively censored Birnbaum–Saunders distribution , 2013 .

[5]  Nashwa M. Yhiea,et al.  Estimation of parameters for the exponentiated Pareto distribution based on progressively type-II right censored data , 2016 .

[6]  Zaher A. Abo-Eleneen Fisher information and optimal schemes in progressive Type-II censored samples , 2007, Model. Assist. Stat. Appl..

[7]  Narayanaswamy Balakrishnan,et al.  Pitman closeness as a criterion for the determination of the optimal progressive censoring scheme , 2012 .

[8]  N. Balakrishnan,et al.  Progressive Censoring: Theory, Methods, and Applications , 2000 .

[9]  Marco Burkschat On optimality of extremal schemes in progressive type II censoring , 2008 .

[10]  Arturo J. Fernández Computing optimal confidence sets for Pareto models under progressive censoring , 2014, J. Comput. Appl. Math..

[11]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring , 2014 .

[12]  Debasis Kundu,et al.  On progressively censored generalized exponential distribution , 2009 .

[13]  Chansoo Kim,et al.  Estimation of the scale parameter of the half-logistic distribution under progressively type II censored sample , 2010 .

[14]  E. Cramer,et al.  A- and D-optimal progressive Type-II censoring designs based on Fisher information , 2012 .

[15]  Udo Kamps,et al.  On distributions Of generalized order statistics , 2001 .

[16]  Bradley Efron,et al.  FISHER'S INFORMATION IN TERMS OF THE HAZARD RATE' , 1990 .

[17]  Hon Keung Tony Ng,et al.  Missing information and an optimal one-step plan in a Type II progressive censoring scheme , 2012 .

[18]  Narayanaswamy Balakrishnan,et al.  The Art of Progressive Censoring: Applications to Reliability and Quality , 2014 .

[19]  M. M. Mohie El-Din,et al.  One- and two-sample Bayesian prediction intervals based on progressively Type-II censored data , 2013 .

[20]  Narayanaswamy Balakrishnan,et al.  Fisher information based progressive censoring plans , 2008, Comput. Stat. Data Anal..