Macrophage miRNAs in atherosclerosis.

The discovery of endogenous microRNAs (miRNAs) in the early 1990s has been followed by the identification of hundreds of miRNAs and their roles in regulating various biological processes, including proliferation, apoptosis, lipid metabolism, glucose homeostasis and viral infection Esteller (2011), Ameres and Zamore (2013) [1,2]. miRNAs are small (~22 nucleotides) non-coding RNAs that function as "rheostats" to simultaneously tweak the expression of multiple genes within a genetic network, resulting in dramatic functional modulation of biological processes. Although the last decade has brought the identification of miRNAs, their targets and function(s) in health and disease, there remains much to be deciphered from the human genome and its complexities in mechanistic regulation of entire genetic networks. These discoveries have opened the door to new and exciting avenues for therapeutic interventions to treat various pathological diseases, including cardiometabolic diseases such as atherosclerosis, diabetes and obesity. In a complex multi-factorial disease like atherosclerosis, many miRNAs have been shown to contribute to disease progression and may offer novel targets for future therapy. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.

[1]  A. Lusis,et al.  Anti-miR-33 Therapy Does Not Alter the Progression of Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[2]  A. Tall,et al.  Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. , 2007, The Journal of clinical investigation.

[3]  P. Barter,et al.  Targeting High-density Lipoproteins to Reduce Cardiovascular Risk: What Is the Evidence? , 2015, Clinical therapeutics.

[4]  Daniel S. Ory,et al.  miR-33 links SREBP-2 induction to repression of sterol transporters , 2010, Proceedings of the National Academy of Sciences.

[5]  Takeshi Kimura,et al.  MicroRNAs and High-Density Lipoprotein Cholesterol Metabolism. , 2015, International heart journal.

[6]  Q. Wang,et al.  An Agomir of miR-144-3p Accelerates Plaque Formation through Impairing Reverse Cholesterol Transport and Promoting Pro-Inflammatory Cytokine Production , 2014, PloS one.

[7]  Min Zhang,et al.  MicroRNA-27a/b regulates cellular cholesterol efflux, influx and esterification/hydrolysis in THP-1 macrophages. , 2014, Atherosclerosis.

[8]  E. Rubin,et al.  Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells , 1992, Cell.

[9]  Shuang Huang,et al.  Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. , 2013, Cardiovascular research.

[10]  Amy Chan,et al.  Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. , 2014, Journal of the American Chemical Society.

[11]  R. Raffai,et al.  Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-κB-driven inflammation and atherosclerosis. , 2015, Circulation research.

[12]  W. Boisvert,et al.  MicroRNA 302a Is a Novel Modulator of Cholesterol Homeostasis and Atherosclerosis , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[13]  M. Fessler,et al.  Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol[S] , 2010, Journal of Lipid Research.

[14]  K. Moore,et al.  Inhibition of miR-33a/b in non-human primates raises plasma HDL and reduces VLDL triglycerides , 2011, Nature.

[15]  Wei Wei,et al.  MiR‐26 controls LXR‐dependent cholesterol efflux by targeting ABCA1 and ARL7 , 2012, FEBS letters.

[16]  T. Shioda,et al.  MicroRNA-33 and the SREBP Host Genes Cooperate to Control Cholesterol Homeostasis , 2010, Science.

[17]  J. Zavadil,et al.  Control of Cholesterol Metabolism and Plasma High-Density Lipoprotein Levels by microRNA-144 , 2013, Circulation research.

[18]  Takeshi Kimura,et al.  MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice , 2013, Nature Communications.

[19]  K. Moore,et al.  Macrophages in the Pathogenesis of Atherosclerosis , 2011, Cell.

[20]  Olivier Levillain,et al.  Macrophage Plasticity in Experimental Atherosclerosis , 2010, PloS one.

[21]  B. Staels,et al.  Macrophage subsets in atherosclerosis , 2015, Nature Reviews Cardiology.

[22]  Joseph L. Goldstein,et al.  Protein Sensors for Membrane Sterols , 2006, Cell.

[23]  David Baltimore,et al.  MicroRNA-155 is induced during the macrophage inflammatory response , 2007, Proceedings of the National Academy of Sciences.

[24]  R. Mahley,et al.  Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. , 1988, Science.

[25]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Anton P. McCaffrey,et al.  Identifying Functional MicroRNAs in Macrophages with Polarized Phenotypes* , 2012, The Journal of Biological Chemistry.

[27]  S. Kauppinen,et al.  Pharmacological Inhibition of a MicroRNA Family in Nonhuman Primates by a Seed-Targeting 8-Mer AntimiR , 2013, Science Translational Medicine.

[28]  S. Fazio,et al.  Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation , 1995, Science.

[29]  F. Kiessling,et al.  MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. , 2012, The Journal of clinical investigation.

[30]  X. Ruan,et al.  Effects of miR-33a-5P on ABCA1/G1-Mediated Cholesterol Efflux under Inflammatory Stress in THP-1 Macrophages , 2014, PloS one.

[31]  R. de Cabo,et al.  Identification of miR-148a as a novel regulator of cholesterol metabolism , 2015, Nature Medicine.

[32]  Dipak P. Ramji,et al.  The key role of apolipoprotein E in atherosclerosis , 2005, Journal of Molecular Medicine.

[33]  J. Rosenblat,et al.  Therapeutic Angiogenesis by Ultrasound-Mediated MicroRNA-126-3p Delivery , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[34]  T. Lehtimäki,et al.  miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. , 2011, Atherosclerosis.

[35]  Aaron N. Chang,et al.  Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. , 2011, The Journal of clinical investigation.

[36]  A. Dávalos,et al.  MicroRNA-758 Regulates Cholesterol Efflux Through Posttranscriptional Repression of ATP-Binding Cassette Transporter A1 , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[37]  Pardis C Sabeti,et al.  Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis , 2015, Nature Medicine.

[38]  K. Moore,et al.  MicroRNA control of high-density lipoprotein metabolism and function. , 2014, Circulation research.

[39]  K. Moore,et al.  miR33 Inhibition Overcomes Deleterious Effects of Diabetes Mellitus on Atherosclerosis Plaque Regression in Mice , 2014, Circulation research.

[40]  B. Schroen,et al.  Hematopoietic miR155 Deficiency Enhances Atherosclerosis and Decreases Plaque Stability in Hyperlipidemic Mice , 2012, PloS one.

[41]  J. Stenvang,et al.  MicroRNAs as targets for antisense-based therapeutics , 2008, Expert opinion on biological therapy.

[42]  W. März,et al.  HDL cholesterol efflux capacity and cardiovascular events. , 2015, The New England journal of medicine.

[43]  D. Rader,et al.  Apolipoprotein E Suppresses the Type I Inflammatory Response In Vivo , 2005, Circulation research.

[44]  K. Rayner,et al.  Therapeutic Inhibition of miR-33 Promotes Fatty Acid Oxidation but Does Not Ameliorate Metabolic Dysfunction in Diet-Induced Obesity , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[45]  K. Moore,et al.  A big role for small RNAs in HDL homeostasis , 2013, Journal of Lipid Research.

[46]  Jin Ye,et al.  Regulation of cholesterol and fatty acid synthesis. , 2011, Cold Spring Harbor perspectives in biology.

[47]  A. Pasquinelli MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship , 2012, Nature Reviews Genetics.

[48]  Christopher J. Cheng,et al.  MicroRNA silencing for cancer therapy targeted to the tumor microenvironment , 2014, Nature.

[49]  H. Moch,et al.  Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice , 2013, EMBO molecular medicine.

[50]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[51]  C. Buske,et al.  miRNA*: a passenger stranded in RNA-induced silencing complex? , 2010, Critical reviews in eukaryotic gene expression.

[52]  Stefan L Ameres,et al.  Diversifying microRNA sequence and function , 2013, Nature Reviews Molecular Cell Biology.

[53]  J. Burnett,et al.  Mipomersen, an antisense apolipoprotein B synthesis inhibitor , 2011, Expert opinion on investigational drugs.

[54]  E. Izaurralde,et al.  Towards a molecular understanding of microRNA-mediated gene silencing , 2015, Nature Reviews Genetics.

[55]  S. Grundmann,et al.  MicroRNA-155 Exerts Cell-Specific Antiangiogenic but Proarteriogenic Effects During Adaptive Neovascularization , 2015, Circulation.

[56]  K. Parhofer,et al.  The potential of mipomersen, an ApoB synthesis inhibitor, to reduce necessity for LDL-apheresis in patients with heterozygous familial hypercholesterolemia and coronary artery disease , 2013, Expert opinion on pharmacotherapy.

[57]  K. Moore,et al.  MicroRNA-33-dependent regulation of macrophage metabolism directs immune cell polarization in atherosclerosis. , 2015, The Journal of clinical investigation.

[58]  P. Edwards,et al.  MicroRNA-144 Regulates Hepatic ATP Binding Cassette Transporter A1 and Plasma High-Density Lipoprotein After Activation of the Nuclear Receptor Farnesoid X Receptor , 2013, Circulation research.

[59]  D. Holtzman,et al.  microRNA-33 Regulates ApoE Lipidation and Amyloid-β Metabolism in the Brain , 2015, The Journal of Neuroscience.

[60]  P. Tassone,et al.  Mir-34: A New Weapon Against Cancer? , 2014, Molecular therapy. Nucleic acids.

[61]  A. von Eckardstein,et al.  Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[62]  Ira Tabas,et al.  Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. , 2011, Cell metabolism.

[63]  K. Rayner MicroRNA-155 in the Heart: The Right Time at the Right Place in the Right Cell. , 2015, Circulation.

[64]  E. Fisher,et al.  Dynamic Aspects of Macrophage Polarization during Atherosclerosis Progression and Regression , 2014, Front. Immunol..

[65]  J. Witztum,et al.  Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study , 2015, The Lancet.

[66]  P. Tsao,et al.  Local MicroRNA Modulation Using a Novel Anti-miR-21–Eluting Stent Effectively Prevents Experimental In-Stent Restenosis , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[67]  G. Getz,et al.  Inhibition of atherosclerosis-promoting microRNAs via targeted polyelectrolyte complex micelles. , 2014, Journal of materials chemistry. B.

[68]  M. Cybulsky,et al.  MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways , 2013, EMBO molecular medicine.

[69]  Xi-Long Zheng,et al.  Chlamydia pneumoniae negatively regulates ABCA1 expression via TLR2-Nuclear factor-kappa B and miR-33 pathways in THP-1 macrophage-derived foam cells. , 2014, Atherosclerosis.

[70]  Takeshi Kimura,et al.  MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo , 2010, Proceedings of the National Academy of Sciences.

[71]  T. P. Prakash,et al.  2'-Modified oligonucleotides for antisense therapeutics. , 2007, Current topics in medicinal chemistry.

[72]  H. Jo,et al.  Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE–/– Mice , 2015, ACS nano.

[73]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[74]  W. Ling,et al.  Coenzyme Q10 Promotes Macrophage Cholesterol Efflux by Regulation of the Activator Protein-1/miR-378/ATP-Binding Cassette Transporter G1–Signaling Pathway , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[75]  L. Goedeke,et al.  microRNA regulation of lipoprotein metabolism , 2014, Current opinion in lipidology.

[76]  K. Moore,et al.  Local Anti-miR Delivery: The Latest in the Arsenal of Drug-Eluting Stents. , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[77]  K. Moore,et al.  MiR-33 Contributes to the Regulation of Cholesterol Homeostasis , 2010, Science.

[78]  Christopher J. Cheng,et al.  Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma , 2012, Proceedings of the National Academy of Sciences.

[79]  X. Ruan,et al.  MicroRNA-101 overexpression by IL-6 and TNF-α inhibits cholesterol efflux by suppressing ATP-binding cassette transporter A1 expression. , 2015, Experimental cell research.

[80]  Mary-Ellen Harper,et al.  Macrophage mitochondrial energy status regulates cholesterol efflux and is enhanced by anti‐miR33 in atherosclerosis , 2015, Circulation research.

[81]  Robert L Wilensky,et al.  Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. , 2011, The New England journal of medicine.

[82]  A. Dávalos,et al.  Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. , 2015, Handbook of experimental pharmacology.

[83]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[84]  F. Buttitta,et al.  Identification of microRNAs 758 and 33b as potential modulators of ABCA1 expression in human atherosclerotic plaques. , 2015, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[85]  A. Schober,et al.  The microRNA-342-5p Fosters Inflammatory Macrophage Activation Through an Akt1- and microRNA-155–Dependent Pathway During Atherosclerosis , 2013, Circulation.

[86]  Takeshi Kimura,et al.  MicroRNA-33 Deficiency Reduces the Progression of Atherosclerotic Plaque in ApoE−/− Mice , 2012, Journal of the American Heart Association.

[87]  A. Schober,et al.  Regulation of Csf1r and Bcl6 in Macrophages Mediates the Stage-Specific Effects of MicroRNA-155 on Atherosclerosis , 2015, Arteriosclerosis, thrombosis, and vascular biology.

[88]  N. Maeda,et al.  Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. , 1992, Science.

[89]  D. Rader,et al.  The not-so-simple HDL story: Is it time to revise the HDL cholesterol hypothesis? , 2012, Nature Medicine.

[90]  A. Schober,et al.  MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[91]  Thomas Thum,et al.  MicroRNA-21: from cancer to cardiovascular disease. , 2010, Current drug targets.

[92]  B. Jeong,et al.  MicroRNA‐302a inhibits adipogenesis by suppressing peroxisome proliferator‐activated receptor γ expression , 2014, FEBS letters.

[93]  J. Fish,et al.  Noncoding RNAs regulate NF-κB signaling to modulate blood vessel inflammation , 2014, Front. Genet..

[94]  Anand Rohatgi,et al.  Cholesterol Efflux Capacity as a Therapeutic Target: Rationale and Clinical Implications. , 2015, Journal of the American College of Cardiology.

[95]  K. Moore,et al.  MicroRNA modulation of cholesterol homeostasis. , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[96]  S. Kauppinen,et al.  Treatment of HCV infection by targeting microRNA. , 2013, The New England journal of medicine.

[97]  Marco Manca,et al.  Distribution of macrophage polarization markers in human atherosclerosis. , 2012, Atherosclerosis.

[98]  D. Haussecker,et al.  miR-122 continues to blaze the trail for microRNA therapeutics. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[99]  Hyun Seok Song,et al.  Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. , 2016, Nature materials.

[100]  M. Fu,et al.  MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E–Deficient Mice , 2014, Arteriosclerosis, thrombosis, and vascular biology.