Tartalo: the door knocker robot

Bioinspired navigation strategies require landmark identification subsystems for goal identification. Door recognition is a key problem to be solved during mobile robot navigation. Doors give access to many locations that are defined as goals for the robot. This paper presents an approach to door identification by means of recognition of the door handle. Rather than using the lines defined by the door blades, the region of interest of an image is extracted by means of the Hough transform and afterwards SIFT keypoints are obtained and matched against a database in order to positively recognize the door. The extraction of the ROI highly reduces the computational load of the SIFT algorithm and increases the handle recognition performance. The approach is evaluated and tested on a real Peoplebot robot, using a behavior-based control architecture that combines the identification module with free-space balancing (for corridor following), door knocking and crossing behaviors.

[1]  Rafael Muñoz-Salinas,et al.  Detection of doors using a genetic visual fuzzy system for mobile robots , 2006, Auton. Robots.

[2]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jack Sklansky,et al.  Finding circles by an array of accumulators , 1975, Commun. ACM.

[4]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[5]  Hong Zhang,et al.  Good Image Features for Bearing-only SLAM , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  S. Thrun,et al.  Change Detection From Multiple Camera Images Extended to Non-Stationary Cameras , 2005 .

[7]  L. Munari How the body shapes the way we think — a new view of intelligence , 2009 .

[8]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[9]  Anders Orebäck,et al.  An architecture for indoor navigation , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[10]  Lars Petersson,et al.  Visually guided manipulation tasks , 2002, Robotics Auton. Syst..

[11]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Luis Payá,et al.  Monte Carlo Localization Using SIFT Features , 2005, IbPRIA.

[14]  Basilio Sierra,et al.  Learning to traverse doors using visual information , 2002, Math. Comput. Simul..

[15]  Jean-Arcady Meyer,et al.  Biomimetic Navigation Models and Strategies in Animats , 1997, AI Commun..

[16]  J. Kittler,et al.  Comparative study of Hough Transform methods for circle finding , 1990, Image Vis. Comput..

[17]  Myo-Taeg Lim,et al.  Door Traversing for a Vision-Based Mobile Robot Using PCA , 2005, KES.

[18]  E. Lazkano,et al.  Markov Localisation for Probabilistic Behaviour Activation , 2006 .

[19]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[20]  Andreas Zell,et al.  Appearance-based Localization of Mobile Robots using Local Integral Invariants , 2006, IAS.

[21]  M. Rohs,et al.  Practical Issues in Physical Sign Recognition with Mobile Devices , 2006 .

[22]  Basilio Sierra,et al.  SORGIN : A SOFTWARE FRAMEWORK FOR BEHAVIOR CONTROL IMPLEMENTATION , 2003 .

[23]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[24]  Henrik I. Christensen,et al.  Vision-based door-traversal for autonomous mobile robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[25]  Richard T. Vaughan,et al.  The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems , 2003 .

[26]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[27]  Stefan B. Williams,et al.  Reduced SIFT Features For Image Retrieval And Indoor Localisation , 2004 .

[28]  Basilio Sierra,et al.  ON THE APPLICATION OF COLOUR HISTOGRAMS FOR MOBILE ROBOT LOCALISATION , 2005 .

[29]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[30]  Jun Jie Foo,et al.  Pruning SIFT for Scalable Near-duplicate Image Matching , 2007, ADC.

[31]  N.P. Papanikolopoulos,et al.  Real-time door detection in cluttered environments , 2000, Proceedings of the 2000 IEEE International Symposium on Intelligent Control. Held jointly with the 8th IEEE Mediterranean Conference on Control and Automation (Cat. No.00CH37147).

[32]  Basilio Sierra,et al.  On the use of Bayesian Networks to develop behaviours for mobile robots , 2007, Robotics Auton. Syst..

[33]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[34]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..