Mutations driving CLL and their evolution in progression and relapse

[1]  D. Oscier,et al.  Low frequency mutations independently predict poor treatment-free survival in early stage chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis , 2015, Haematologica.

[2]  M. Hallek Chronic lymphocytic leukemia: 2015 Update on diagnosis, risk stratification, and treatment , 2015, American journal of hematology.

[3]  Trevor J Pugh,et al.  Oncotator: Cancer Variant Annotation Tool , 2015, Human mutation.

[4]  Luca Laurenti,et al.  Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia , 2014, eLife.

[5]  Michael J. Ziller,et al.  Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. , 2014, Cancer cell.

[6]  Jianguo Wu,et al.  Critical role of SHP2 (PTPN11) signaling in germinal center-derived lymphoma , 2014, Haematologica.

[7]  Steven J. M. Jones,et al.  Integrated Genomic Characterization of Papillary Thyroid Carcinoma , 2014, Cell.

[8]  Satoru Miyano,et al.  Acquired initiating mutations in early hematopoietic cells of CLL patients. , 2014, Cancer discovery.

[9]  Alfonso Valencia,et al.  Transcriptome characterization by RNA sequencing identifies a major molecular and clinical subdivision in chronic lymphocytic leukemia , 2014, Genome research.

[10]  John Y. K. Lee,et al.  Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas , 2014, Nature Genetics.

[11]  S. Gabriel,et al.  Discovery and saturation analysis of cancer genes across 21 tumor types , 2014, Nature.

[12]  M. Cazzola,et al.  Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. , 2012, Blood.

[13]  Medical Faculty,et al.  High-Resolution Genomic Profiling of Chronic Lymphocytic Leukemia Reveals New Recurrent Genomic Alterations , 2014 .

[14]  M. Stratton,et al.  Clinical and biological implications of driver mutations in myelodysplastic syndromes. , 2013, Blood.

[15]  S. Elledge,et al.  Cumulative Haploinsufficiency and Triplosensitivity Drive Aneuploidy Patterns and Shape the Cancer Genome , 2013, Cell.

[16]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[17]  J. Zhang,et al.  Far upstream element binding protein 1: a commander of transcription, translation and beyond , 2013, Oncogene.

[18]  H. Döhner,et al.  BRAF mutations in chronic lymphocytic leukemia , 2013, Leukemia & lymphoma.

[19]  Steven A. Roberts,et al.  Mutational heterogeneity in cancer and the search for new cancer genes , 2014 .

[20]  D. Landau,et al.  Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics , 2013, Genome Medicine.

[21]  Francesco Bertoni,et al.  MGA, a suppressor of MYC, is recurrently inactivated in high risk chronic lymphocytic leukemia , 2013, Leukemia & lymphoma.

[22]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[23]  E. Petretto,et al.  Genome-wide identification of Ikaros targets elucidates its contribution to mouse B-cell lineage specification and pre-B-cell differentiation. , 2013, Blood.

[24]  Carlos López-Otín,et al.  The evolutionary biography of chronic lymphocytic leukemia , 2013, Nature Genetics.

[25]  A. Sivachenko,et al.  Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples , 2013, Nature Biotechnology.

[26]  A. McKenna,et al.  Evolution and Impact of Subclonal Mutations in Chronic Lymphocytic Leukemia , 2012, Cell.

[27]  R. Dalla‐Favera,et al.  Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. , 2013, Blood.

[28]  J. Downing,et al.  High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. , 2012, Blood.

[29]  Jenny Taylor,et al.  Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. , 2012, Blood.

[30]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[31]  Eric S. Lander,et al.  Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing , 2012, Proceedings of the National Academy of Sciences.

[32]  E. Giné,et al.  Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia , 2011, Nature Genetics.

[33]  Kristian Cibulskis,et al.  ContEst: estimating cross-contamination of human samples in next-generation sequencing data , 2011, Bioinform..

[34]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[35]  Paul T. Spellman,et al.  Parent-specific copy number in paired tumor-normal studies using circular binary segmentation , 2011, Bioinform..

[36]  Juliane C. Dohm,et al.  Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia , 2011, Nature.

[37]  S. Pileri,et al.  BRAF mutations in hairy-cell leukemia. , 2011, The New England journal of medicine.

[38]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[39]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[40]  Trevor J Pugh,et al.  Initial genome sequencing and analysis of multiple myeloma , 2011, Nature.

[41]  A. Rebollo,et al.  Deregulation of Aiolos expression in chronic lymphocytic leukemia is associated with epigenetic modifications. , 2011, Blood.

[42]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[43]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[44]  Dennis C. Friedrich,et al.  A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries , 2011, Genome Biology.

[45]  Andrew W. Greaves,et al.  Standardization of fluorescence in situ hybridization studies on chronic lymphocytic leukemia (CLL) blood and marrow cells by the CLL Research Consortium. , 2010, Cancer genetics and cytogenetics.

[46]  A. Berrebi,et al.  Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial , 2010, The Lancet.

[47]  K. Chung,et al.  Dyrk1A Phosphorylates p53 and Inhibits Proliferation of Embryonic Neuronal Cells* , 2010, The Journal of Biological Chemistry.

[48]  D. Heimbrook,et al.  RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. , 2010, Cancer research.

[49]  J. Reis-Filho,et al.  Kinase-Dead BRAF and Oncogenic RAS Cooperate to Drive Tumor Progression through CRAF , 2010, Cell.

[50]  H. Ohtsuki,et al.  Accumulation of driver and passenger mutations during tumor progression , 2009, Proceedings of the National Academy of Sciences.

[51]  S. Menéndez,et al.  ELF4/MEF Activates MDM2 Expression and Blocks Oncogene-Induced p16 Activation To Promote Transformation , 2009, Molecular and Cellular Biology.

[52]  U. Frey,et al.  The IKZF3 (Aiolos) transcription factor is highly upregulated and inversely correlated with clinical progression in chronic lymphocytic leukaemia , 2009, British journal of haematology.

[53]  Alan H Beggs,et al.  Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. , 2008, American journal of human genetics.

[54]  Sonia Jain,et al.  Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. , 2008, Blood.

[55]  A. Ashworth,et al.  Characterising the TP53-deleted subgroup of chronic lymphocytic leukemia: an analysis of additional cytogenetic abnormalities detected by interphase fluorescence in situ hybridisation and array-based comparative genomic hybridisation , 2008, Leukemia & lymphoma.

[56]  R. Siebert,et al.  Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B‐chronic lymphocytic leukaemia , 2007, British journal of haematology.

[57]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Whitlock Combining probability from independent tests: the weighted Z‐method is superior to Fisher's approach , 2005, Journal of evolutionary biology.

[59]  U. Weidle,et al.  Dissection of transcriptional programmes in response to serum and c-Myc in a human B-cell line , 2005, Oncogene.

[60]  A. Veronese,et al.  Chronic lymphocytic leukemia with 6q− shows distinct hematological features and intermediate prognosis , 2004, Leukemia.

[61]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Martin A. Nowak,et al.  The role of chromosomal instability in tumor initiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. López-Guillermo,et al.  Genetic imbalances in progressed B-cell chronic lymphocytic leukemia and transformed large-cell lymphoma (Richter's syndrome). , 2002, The American journal of pathology.

[64]  A Benner,et al.  Genomic aberrations and survival in chronic lymphocytic leukemia. , 2000, The New England journal of medicine.