Adaptive unstructured volume remeshing - I: The method

We present an adaptive remeshing algorithm for meshes of unstructured triangles in two dimensions and unstructured tetrahedra in three dimensions. The algorithm automatically adjusts the size of the elements with time and position in the computational domain in order to resolve the relevant scales in multiscale physical systems to a user-prescribed accuracy while minimizing computational cost. The optimal mesh that provides the desired resolution is achieved by minimizing a spring-like mesh energy function that depends on the local physical scales using local mesh restructuring operations that include edge-swapping, element insertion/removal, and dynamic mesh-node displacement (equilibration). The algorithm is a generalization to volume domains of the adaptive surface remeshing algorithm developed by Cristini et al. [V. Cristini, J. Blawzdziewicz, M. Loewenberg, An adaptive mesh algorithm for evolving surfaces: simulations of drop breakup and coalescence. J. Comp. Phys., 168 (2001) 445] in the context of deforming interfaces in two and three dimensions. The remeshing algorithm is versatile and can be applied to a number of physical and biological problems, where the local length scales are dictated by the specific problem. In Part II [X. Zheng, J. Lowengrub, A. Anderson, V. Cristini, Adaptive unstructured volume remeshing - II: application to two- and three-dimensional level-set simulations of multiphase flow, J. Comp. Phys., in press], we illustrate the performance of an implementation of the algorithm in finite-element/level-set simulations of deformable droplet and fluid-fluid interface interactions, breakup and coalescence in multiphase flows.

[1]  Vittorio Cristini,et al.  Two-Dimensional Chemotherapy Simulations Demonstrate Fundamental Transport and Tumor Response Limitations Involving Nanoparticles , 2004 .

[2]  M. Minion A Projection Method for Locally Refined Grids , 1996 .

[3]  M. Baines Moving finite elements , 1994 .

[4]  Harald Garcke,et al.  The Cahn-Hilliard equation with elasticity-finite element approximation and qualitative studies , 2001 .

[5]  Graham F. Carey,et al.  Computational grids : generation, adaptation, and solution strategies , 1997 .

[6]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[7]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[8]  V. Cristini,et al.  Adaptive unstructured volume remeshing - II: Application to two- and three-dimensional level-set simulations of multiphase flow , 2005 .

[9]  Ann S. Almgren,et al.  An adaptive level set approach for incompressible two-phase flows , 1997 .

[10]  M. Berger,et al.  An Adaptive Version of the Immersed Boundary Method , 1999 .

[11]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[12]  M. Rivara,et al.  A 3-D refinement algorithm suitable for adaptive and multi-grid techniques , 1992 .

[13]  Scott D. Phillips,et al.  Computational and experimental analysis of dynamics of drop formation , 1999 .

[14]  Alexander Z. Zinchenko,et al.  A novel boundary-integral algorithm for viscous interaction of deformable drops , 1997 .

[15]  E. Süli,et al.  hp‐Discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity , 2002 .

[16]  Ricardo H. Nochetto,et al.  An Adaptive Uzawa FEM for the Stokes Problem: Convergence without the Inf-Sup Condition , 2002, SIAM J. Numer. Anal..

[17]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[18]  John B. Bell,et al.  An Adaptive Mesh Projection Method for Viscous Incompressible Flow , 1997, SIAM J. Sci. Comput..

[19]  J. Strain Tree Methods for Moving Interfaces , 1999 .

[20]  Patrick Patrick Anderson,et al.  An adaptive front tracking technique for three-dimensional transient flows , 2000 .

[21]  Pingwen Zhang,et al.  A Moving Mesh Finite Element Algorithm for Singular Problems in Two and Three Space Dimensions , 2002 .

[22]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[23]  C. Budd,et al.  The geometric integration of scale-invariant ordinary and partial differential equations , 2001 .

[24]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[25]  M. Rivara Selective refinement/derefinement algorithms for sequences of nested triangulations , 1989 .

[26]  J. Sethian Curvature Flow and Entropy Conditions Applied to Grid Generation , 1994 .

[27]  Xunlei Jiang,et al.  A P 1 - P 1 Finite Element Method for a Phase Relaxation Model II: Adaptively Refined Meshes , 1999 .

[28]  Vassili S. Sochnikov,et al.  Level set calculations of the evolution of boundaries on a dynamically adaptive grid , 2003 .

[29]  L. H. Howell,et al.  Radiation diffusion for multi-fluid Eulerian hydrodynamics with adaptive mesh refinement , 2003 .

[30]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[31]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[32]  Stanley Osher,et al.  Level-Set-Based Deformation Methods for Adaptive Grids , 2000 .

[33]  Pingwen Zhang,et al.  An adaptive mesh redistribution method for nonlinear Hamilton--Jacobi equations in two-and three-dimensions , 2003 .

[34]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[35]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[36]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[37]  R. I. Issa,et al.  A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes , 1999 .

[38]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[39]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[40]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[41]  Carl Ollivier-Gooch,et al.  Tetrahedral mesh improvement using swapping and smoothing , 1997 .

[42]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[43]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[44]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[45]  Xiaofeng Yang,et al.  An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids , 2006, J. Comput. Phys..

[46]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[47]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[48]  G. Wittum,et al.  Two-Phase Flows on Interface Refined Grids Modeled with VOF, Staggered Finite Volumes, and Spline Interpolants , 2001 .

[49]  David P. Schmidt,et al.  DIRECT INTERFACE TRACKING OF DROPLET DEFORMATION , 2002 .

[50]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[51]  Héctor D. Ceniceros,et al.  Study of the long-time dynamics of a viscous vortex sheet with a fully adaptive nonstiff method , 2004 .