An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self‐Assembled Systems

Triply periodic minimal surface structures and related geometries are widely identified in many natural systems, such as biological membranes and biophotonic structures in butterfly-wing scales. Inspired by their marvelous and highly symmetrical structures and optimized physical properties, these structures have sparked immense interest for creating novel materials by extracting the design from nature. Significant progress has been made to understand these biological structures and fabricate artificial materials by top-down and bottom-up approaches for numerous applications in chemistry and materials science. Herein, research achievements, including theoretical and experimental discoveries, in both biological systems and the artificial synthesis of materials with triply periodic minimal surface structures and related materials are summarized. Recent developments in self-assembled lyotropic liquid crystal phases, block copolymer systems, and their inorganic replicas are discussed in detail.

[1]  O. Terasaki,et al.  Structural Investigations of AMS-n Mesoporous Materials by Transmission Electron Microscopy , 2004 .

[2]  O. Terasaki,et al.  A lesson from the unusual morphology of silica mesoporous crystals: growth and close packing of spherical micelles with multiple twinning. , 2006, Angewandte Chemie.

[3]  Martin Maldovan,et al.  Diamond-structured photonic crystals , 2004, Nature materials.

[4]  Matsen Stabilizing new morphologies by blending homopolymer with block copolymer. , 1995, Physical review letters.

[5]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[6]  D. Norris,et al.  Photonic crystals. A view of the future. , 2007, Nature materials.

[7]  J. M. Elliott,et al.  Facile Production of Ordered 3D Platinum Nanowire Networks with “Single Diamond” Bicontinuous Cubic Morphology , 2013, Advanced materials.

[8]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[9]  Reinhard Nesper,et al.  Nodal surfaces of Fourier series: Fundamental invariants of structured matter , 1991 .

[10]  J. Sadoc,et al.  Periodic systems of frustrated fluid films and « bicontinuous » cubic structures in liquid crystals , 1987 .

[11]  G. Lindblom,et al.  Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance , 1989 .

[12]  J. Seddon,et al.  Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. , 1990, Biochimica et biophysica acta.

[13]  A. Benedicto,et al.  Bicontinuous Cubic Morphologies in Block Copolymers and Amphiphile/Water Systems: Mathematical Description through the Minimal Surfaces , 1997 .

[14]  Schick,et al.  Stable and unstable phases of a diblock copolymer melt. , 1994, Physical review letters.

[15]  Silica-Based, Cubic Mesostructures: Synthesis, Characterization and Relevance for Catalysis , 1998 .

[16]  C. Tschierske,et al.  Formation of a Cubic Liquid Crystalline Nanostructure with π-Conjugated Fluorinated Rods on the Gyroid Minimal Surface. , 2017, Chemistry.

[17]  Eric W. Cochran,et al.  Stability of the Gyroid Phase in Diblock Copolymers at Strong Segregation , 2006 .

[18]  M. Mahanthappa,et al.  Discovery of a tetracontinuous, aqueous lyotropic network phase with unusual 3D-hexagonal symmetry. , 2014, Soft matter.

[19]  Jun Hyuk Moon,et al.  Chemical aspects of three-dimensional photonic crystals. , 2010, Chemical reviews.

[20]  Grosse-Brauckmann,et al.  On Gyroid Interfaces , 1997, Journal of colloid and interface science.

[21]  C. Tschierske,et al.  Transition from nematic to gyroid-type cubic soft self-assembly by side-chain engineering of π-conjugated sticky rods. , 2017, Soft matter.

[22]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[23]  Hong Li,et al.  A Shifted Double-Diamond Titania Scaffold. , 2017, Angewandte Chemie.

[24]  Thomas F. Krauss,et al.  Photonic crystals in the optical regime — past, present and future , 1999 .

[25]  J. Baumberg,et al.  Tunable 3D Extended Self‐Assembled Gold Metamaterials with Enhanced Light Transmission , 2013, Advanced materials.

[26]  S. Maier,et al.  Three‐Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self‐Assembled Chiral Gyroid Networks , 2011 .

[27]  M. Matsen Effect of Architecture on the Phase Behavior of AB-Type Block Copolymer Melts , 2012 .

[28]  R. Ho,et al.  Bicontinuous ceramics with high surface area from block copolymer templates. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[29]  O. Terasaki,et al.  Bicontinuous cubic mesoporous materials with biphasic structures. , 2011, Chemistry.

[30]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[31]  T. Shin,et al.  Solution self-assembly of block copolymers containing a branched hydrophilic block into inverse bicontinuous cubic mesophases. , 2015, ACS nano.

[32]  Frank S. Bates,et al.  Origins of Complex Self-Assembly in Block Copolymers , 1996 .

[33]  S. Diele On thermotropic cubic mesophases , 2002 .

[34]  R. Hołyst Liquid crystals: infinite networks of surfaces. , 2005, Nature materials.

[35]  J. Baumberg,et al.  A 3D Optical Metamaterial Made by Self‐Assembly , 2012, Advanced materials.

[36]  C Pouya,et al.  Electromagnetic characterization of millimetre-scale replicas of the gyroid photonic crystal found in the butterfly Parides sesostris , 2012, Interface Focus.

[37]  Thomas H. Epps,et al.  Phase Transformations Involving Network Phases in ISO Triblock Copolymer−Homopolymer Blends , 2005 .

[38]  Jennifer N Cha,et al.  Discovery of a diamond-based photonic crystal structure in beetle scales. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  O. Terasaki,et al.  Evolution of packing parameters in the structural changes of silica mesoporous crystals: cage-type, 2D cylindrical, bicontinuous diamond and gyroid, and lamellar. , 2011, Journal of the American Chemical Society.

[40]  Thomas H. Epps,et al.  Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols. , 2009, Chemistry of materials : a publication of the American Chemical Society.

[41]  S. Förster Amphiphilic Block Copolymers for Templating Applications , 2003 .

[42]  G. Fredrickson,et al.  Block Copolymers—Designer Soft Materials , 1999 .

[43]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[44]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[45]  Spain.,et al.  Self-Assembled Triply Periodic Minimal Surfaces as Molds for Photonic Band Gap Materials , 1998, cond-mat/9810299.

[46]  Yuru Deng,et al.  A look through ‘lens’ cubic mitochondria , 2012, Interface Focus.

[47]  Bates,et al.  Epitaxial relationship for hexagonal-to-cubic phase transition in a block copolymer mixture. , 1994, Physical review letters.

[48]  Francisco J. Martinez-Veracoechea,et al.  Computation of Free Energies of Cubic Bicontinuous Phases for Blends of Diblock Copolymer and Selective Homopolymer , 2016 .

[49]  Yuru Deng,et al.  Three-dimensional periodic cubic membrane structure in the mitochondria of amoebaeChaos carolinensis , 1998, Protoplasma.

[50]  S. Andersson,et al.  A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system , 1984 .

[51]  J. S. Kole,et al.  Photonic band gaps in materials with triply periodic surfaces and related tubular structures , 2003 .

[52]  Stephen T. Hyde,et al.  Continuous transformations of cubic minimal surfaces , 1999 .

[53]  T. Dotera Tricontinuous cubic structures in ABC/A/C copolymer and homopolymer blends. , 2002, Physical review letters.

[54]  Jiro Suzuki,et al.  Surfaces of tricontinuous structure formed by an ABC triblock copolymer in bulk , 1998 .

[55]  F. Bates,et al.  Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition , 1995 .

[56]  E. Thomas,et al.  Shifting Networks to Achieve Subgroup Symmetry Properties , 2014, Advanced materials.

[57]  Chiyoung Park,et al.  Colloidal inverse bicontinuous cubic membranes of block copolymers with tunable surface functional groups. , 2014, Nature chemistry.

[58]  H De Raedt,et al.  Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi , 2010, Journal of The Royal Society Interface.

[59]  T. Ohsuna,et al.  Synthesis and Characterization of Macroporous Photonic Structure that Consists of Azimuthally Shifted Double-Diamond Silica Frameworks , 2014 .

[60]  T. Oka Transformation between inverse bicontinuous cubic phases of a lipid from diamond to primitive. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[61]  S. Che,et al.  Silica Scaffold with Shifted "Plumber's Nightmare" Networks and their Interconversion into Diamond Networks. , 2017, Angewandte Chemie.

[62]  J. M. Nicol,et al.  Cooperative organization of inorganic-surfactant and biomimetic assemblies , 1995, Science.

[63]  Tae-Wan Kim,et al.  MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer-butanol-water system. , 2005, Journal of the American Chemical Society.

[64]  David M. Anderson,et al.  Periodic area-minimizing surfaces in block copolymers , 1988, Nature.

[65]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[66]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[67]  P. Olmsted,et al.  Strong-Segregation Theory of Bicontinuous Phases in Block Copolymers [Phys. Rev. Lett. 72, 936 (1994)] , 1994 .

[68]  B. Gunning Membrane geometry of “open” prolamellar bodies , 2005, Protoplasma.

[69]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[70]  Klaus Mecke,et al.  Coexistence of both gyroid chiralities in individual butterfly wing scales of Callophrys rubi , 2015, Proceedings of the National Academy of Sciences.

[71]  Ulrich Wiesner,et al.  Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. , 2011, Chemical Society reviews.

[72]  S. Hyde CURVATURE AND THE GLOBAL STRUCTURE OF INTERFACES IN SURFACTANT-WATER SYSTEMS , 1990 .

[73]  Ulrich B Wiesner,et al.  Ordered gyroidal tantalum oxide photocatalysts: eliminating diffusion limitations and tuning surface barriers. , 2016, Nanoscale.

[74]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[75]  B. Schuetrumpf,et al.  Appearance of the single gyroid network phase in “nuclear pasta” matter , 2015 .

[76]  V. Abetz,et al.  Core−Shell Cylinders and Core−Shell Gyroid Morphologies via Blending of Lamellar ABC Triblock and BC Diblock Copolymers† , 1999 .

[77]  S. Hyde,et al.  A rhombohedral family of minimal surfaces as a pathway between the P and D cubic mesophases , 2004 .

[78]  O. Terasaki,et al.  Template synthesis of asymmetrically mesostructured platinum networks. , 2001, Journal of the American Chemical Society.

[79]  Edwin L. Thomas,et al.  The gyroid: A new equilibrium morphology in weakly segregated diblock copolymers , 1994 .

[80]  M. Gu,et al.  Fabrication and characterization of three-dimensional biomimetic chiral composites. , 2011, Optics express.

[81]  Edwin L. Thomas,et al.  Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology , 1986 .

[82]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[83]  J. Li,et al.  Holographic Design and Fabrication of Diamond Symmetry Photonic Crystals Via Dual‐Beam Quadruple Exposure , 2010, Advanced materials.

[84]  U. Wiesner,et al.  Organically modified aluminosilicate mesostructures from block copolymer phases , 1997, Science.

[85]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[86]  Jacek Klinowski,et al.  Nodal surface approximations to the P,G,D and I-WP triply periodic minimal surfaces , 2001 .

[87]  V. Luzzati,et al.  Polymorphism of Lipids , 1967, Nature.

[88]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[89]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[90]  K. Fontell Cubic phases in surfactant and surfactant-like lipid systems , 1990 .

[91]  R. Corkery,et al.  Inorganic chiral 3-D photonic crystals with bicontinuous gyroid structure replicated from butterfly wing scales. , 2011, Chemical communications.

[92]  A. Mackay,et al.  Hypothetical graphite structures with negative gaussian curvature , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[93]  B. Ninham,et al.  Observation of two phases within the cubic phase region of a ternary surfactant solution , 1990 .

[94]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[95]  S. Gruner,et al.  Morphology Diagram of a Diblock Copolymer−Aluminosilicate Nanoparticle System , 2009 .

[96]  O. Terasaki,et al.  A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure , 2003, Nature materials.

[97]  G. Ungar,et al.  A triple-network tricontinuous cubicliquid crystal , 2005, Nature materials.

[98]  J. Sadoc,et al.  Infinite periodic minimal surfaces and their crystallography in the hyperbolic plane , 1989 .

[99]  Edward L Cussler,et al.  Core-shell gyroid morphology in a poly(isoprene-block-styrene-block- dimethylsiloxane) triblock copolymer , 1999 .

[100]  Y. Mogi,et al.  Superlattice Structures in Morphologies of the ABC Triblock Copolymers , 1994 .

[101]  S. Kohlwein,et al.  Chapter 6 Cubic Membranes , 2009, International Review of Cell and Molecular Biology.

[102]  N. Krog,et al.  Structural relationships between lamellar, cubic and hexagonal phases in monoglyceride-water systems. possibility of cubic structures in biological systems , 1980 .

[103]  Y. Mogi,et al.  Preparation and morphology of triblock copolymers of the ABC type , 1992 .

[104]  U. Wiesner,et al.  A bicontinuous double gyroid hybrid solar cell. , 2009, Nano letters.

[105]  Stephen T. Hyde,et al.  Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers , 1988 .

[106]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[107]  Ulrich B Wiesner,et al.  Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. , 2007, Nature materials.

[108]  G. Schröder-Turk,et al.  Polycontinuous geometries for inverse lipid phases with more than two aqueous network domains. , 2013, Faraday discussions.

[109]  S. Kutsumizu Recent Progress in the Synthesis and Structural Clarification of Thermotropic Cubic Phases , 2012 .

[110]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[111]  Stephen T. Hyde,et al.  Geometry of interfaces: topological complexity in biology and materials , 2012, Interface Focus.

[112]  Hirokazu Hasegawa,et al.  Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers , 1987 .

[113]  T. Shin,et al.  Structural Requirements of Block Copolymers for Self-Assembly into Inverse Bicontinuous Cubic Mesophases in Solution , 2016 .

[114]  L. Scriven,et al.  Equilibrium bicontinuous structure , 1976, Nature.

[115]  S. Che,et al.  Anionic surfactant templated mesoporous silicas (AMSs). , 2013, Chemical Society reviews.

[116]  Stephen A. Bagshaw,et al.  Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants , 1995, Science.

[117]  Augustine Urbas,et al.  Photonic properties of bicontinuous cubic microphases , 2002 .

[118]  Suresh Narayanan,et al.  Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales , 2010, Proceedings of the National Academy of Sciences.

[119]  Martin Maldovan,et al.  Triply periodic bicontinuous structures through interference lithography: a level-set approach. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[120]  J. Baumberg,et al.  Optical Properties of Gyroid Structured Materials: From Photonic Crystals to Metamaterials , 2015 .

[121]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[122]  Jacob Judas Kain Kirkensgaard,et al.  Kaleidoscopic tilings, networks and hierarchical structures in blends of 3-miktoarm star terpolymers , 2012, Interface Focus.

[123]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[124]  Francisco J. Martinez-Veracoechea,et al.  Monte Carlo study of the stabilization of complex bicontinuous phases in diblock copolymer systems , 2007 .

[125]  D. Muller,et al.  Networked and chiral nanocomposites from ABC triblock terpolymer coassembly with transition metal oxide nanoparticles , 2012 .

[126]  Kyoung Taek Kim,et al.  Covalent Stabilization of Inverse Bicontinuous Cubic Structures of Block Copolymer Bilayers by Photodimerization of Indene Pendant Groups of Polystyrene Hydrophobic Blocks , 2017 .

[127]  J. Bai,et al.  Spontaneous formation and characterization of silica mesoporous crystal spheres with reverse multiply twinned polyhedral hollows. , 2011, Journal of the American Chemical Society.

[128]  O. Terasaki,et al.  Synthesis and characterization of mesoporous silica AMS-10 with bicontinuous cubic Pn3m symmetry. , 2006, Angewandte Chemie.

[129]  S. Che,et al.  Organically Functionalized Mesoporous Silica by Co‐structure‐Directing Route , 2010 .

[130]  B. Ninham,et al.  A disordered lamellar structure in the isotropic phase of a ternary double-chain surfactant system , 1990 .

[131]  Jean-Pol Vigneron,et al.  Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration , 2011 .

[132]  S. Linden,et al.  Photonic metamaterials by direct laser writing and silver chemical vapour deposition. , 2008, Nature materials.

[133]  Y. Mogi,et al.  Tricontinuous morphology of triblock copolymers of the ABC type , 1992 .

[134]  J. Baumberg,et al.  Gyroid Optical Metamaterials: Calculating the Effective Permittivity of Multidomain Samples , 2016, ACS photonics.

[135]  L. Poladian,et al.  The chiral structure of porous chitin within the wing-scales of Callophrys rubi. , 2011, Journal of structural biology.

[136]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[137]  D. Siegel,et al.  Lamellar/inverted cubic (L alpha/QII) phase transition in N-methylated dioleoylphosphatidylethanolamine. , 1990, Biochemistry.

[138]  G. Schröder-Turk,et al.  Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development , 2017, Science Advances.

[139]  H. Nissen Crystal Orientation and Plate Structure in Echinoid Skeletal Units , 1969, Science.

[140]  T. Dotera,et al.  The diagonal bond method: A new lattice polymer model for simulation study of block copolymers , 1996 .

[141]  O. Hess,et al.  On the Origin of Chirality in Nanoplasmonic Gyroid Metamaterials , 2013, Advanced materials.

[142]  J. Ying,et al.  A tri-continuous mesoporous material with a silica pore wall following a hexagonal minimal surface. , 2009, Nature chemistry.

[143]  C. Ross,et al.  Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up , 2006 .

[144]  S. Gruner,et al.  Direct access to bicontinuous skeletal inorganic plumber's nightmare networks from block copolymers. , 2005, Angewandte Chemie.

[145]  S. Gruner,et al.  Mesophase Structure-Mechanical and Ionic Transport Correlations in Extended Amphiphilic Dendrons , 2004, Science.

[146]  A. Chakraborty,et al.  Macromolecules at Surfaces: Research Challenges and Opportunities from Tribology to Biology , 2003 .

[147]  Anna Carlsson,et al.  Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography , 2002 .

[148]  Francisco J. Martinez-Veracoechea,et al.  Bicontinuous Phases in Diblock Copolymer/Homopolymer Blends : Simulation and Self-Consistent Field Theory , 2009 .

[149]  Calum J. Drummond,et al.  Surfactant self-assembly objects as novel drug delivery vehicles , 1999 .

[150]  R. Templer,et al.  Kinetics and mechanism of the interconversion of inverse bicontinuous cubic mesophases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[151]  Dierk Raabe,et al.  Extreme Optical Properties Tuned Through Phase Substitution in a Structurally Optimized Biological Photonic Polycrystal , 2013 .

[152]  Ullrich Steiner,et al.  Block copolymer self-assembly for nanophotonics. , 2015, Chemical Society reviews.

[153]  Eric W. Cochran,et al.  Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers , 2004 .

[154]  Sol M Gruner,et al.  The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates. , 2003, Journal of the American Chemical Society.

[155]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[156]  Shu Yang,et al.  Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures , 2004 .

[157]  J. Lippincott-Schwartz,et al.  Formation of stacked ER cisternae by low affinity protein interactions , 2003, The Journal of cell biology.

[158]  A. Semenov,et al.  Stability of the OBDD Structure for Diblock Copolymer Melts in the Strong Segregation Limit , 1994 .

[159]  Karsten Grosse-Brauckmann,et al.  Triply periodic minimal and constant mean curvature surfaces , 2012, Interface Focus.

[160]  J. Vigneron,et al.  Beyond butterflies—the diversity of biological photonic crystals , 2007 .

[161]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .

[162]  Min Gu,et al.  Miniature chiral beamsplitter based on gyroid photonic crystals , 2013, Nature Photonics.

[163]  H. Karcher The triply periodic minimal surfaces of Alan Schoen and their constant mean curvature companions , 1989 .

[164]  S. Gruner,et al.  Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides , 2014, ACS nano.

[165]  D M Chilukuri,et al.  Cubic phase gels as drug delivery systems. , 2001, Advanced drug delivery reviews.

[166]  Sol M Gruner,et al.  Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors , 2016, Science Advances.

[167]  S. Leibler,et al.  Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[168]  R. Corkery,et al.  3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths , 2013 .

[169]  F. Bates,et al.  Unifying Weak- and Strong-Segregation Block Copolymer Theories , 1996 .

[170]  G. Schröder-Turk,et al.  Bicontinuous geometries and molecular self-assembly: comparison of local curvature and global packing variations in genus-three cubic, tetragonal and rhombohedral surfaces , 2006 .

[171]  M. Matsen Gyroid versus double-diamond in ABC triblock copolymer melts , 1998 .

[172]  M. Bartl,et al.  Diamond‐Structured Titania Photonic‐Bandgap Crystals from Biological Templates , 2010, Advanced materials.

[173]  L. J. Lis,et al.  Membrane fusion and inverted phases. , 1989, Biochemistry.

[174]  Francisco J. Martinez-Veracoechea,et al.  The Plumber’s Nightmare Phase in Diblock Copolymer/Homopolymer Blends. A Self-Consistent Field Theory Study. , 2009 .

[175]  Lu Han,et al.  The role of curvature in silica mesoporous crystals , 2012, Interface Focus.

[176]  R. Corkery,et al.  On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals , 2017, Interface Focus.

[177]  Ulrich Wiesner,et al.  Block Copolymer−Ceramic Hybrid Materials from Organically Modified Ceramic Precursors , 2001 .

[178]  Feng Gao,et al.  Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. , 2002, Angewandte Chemie.

[179]  G. Schröder-Turk,et al.  Absence of circular polarisation in reflections of butterfly wing scales with chiral gyroid structure , 2014 .

[180]  Olivier Deparis,et al.  Orange reflection from a three-dimensional photonic crystal in the scales of the weevil Pachyrrhynchus congestus pavonius (Curculionidae). , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[181]  V. Abetz,et al.  Core−Shell Double Gyroid Morphologies in ABC Triblock Copolymers with Different Chain Topologies† , 2000 .

[182]  D. Stavenga,et al.  Brilliant camouflage: photonic crystals in the diamond weevil, Entimus imperialis , 2012, Proceedings of the Royal Society B: Biological Sciences.

[183]  D. G. Stavenga,et al.  Discovery of ordered and quasi-ordered photonic crystal structures in the scales of the beetle Eupholus magnificus. , 2011, Optics express.

[184]  M Gu,et al.  Circular dichroism in biological photonic crystals and cubic chiral nets. , 2011, Physical review letters.

[185]  G. Fredrickson,et al.  Morphology of Symmetric ABC Triblock Copolymers in the Strong Segregation Limit , 1998 .

[186]  M. Caffrey,et al.  A lipid's eye view of membrane protein crystallization in mesophases. , 2000, Current opinion in structural biology.

[187]  Manuel Moliner,et al.  The ITQ-37 mesoporous chiral zeolite , 2009, Nature.

[188]  Y. Yao,et al.  Interconversion of Triply Periodic Constant Mean Curvature Surface Structures: From Double Diamond to Single Gyroid , 2016 .

[189]  Martin Wegener,et al.  Direct Laser Writing of Three‐ Dimensional Photonic Crystals with a Complete Photonic Bandgap in Chalcogenide Glasses , 2006 .

[190]  F. Bates,et al.  Ordered Network Mesostructures in Block Polymer Materials , 2009 .

[191]  E. Thomas,et al.  Effect of arm number and arm molecular weight on the solid-state morphology of poly(styrene-isoprene) star block copolymers , 1986 .

[192]  Alan L. Mackay,et al.  Periodic minimal surfaces from finite element methods , 1994 .

[193]  Towards absolute calibration of optical tweezers. , 2007 .

[194]  Y. Matsushita,et al.  The tricontinuous double-gyroid structure from a three-component polymer system , 2000 .

[195]  Jacek Klinowski,et al.  Curved surfaces in chemical structure , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.