A three-node triangular element fitted to numerical manifold method with continuous nodal stress for crack analysis

Abstract A three-node triangular element fitted to the numerical manifold method with continuous nodal stress called Trig3-CNS (NMM) element for accurately modeling two-dimensional linear elastic fracture problems is presented. By adopting two cover systems, namely, the mathematical cover and physical cover, the numerical manifold method (NMM) could easily solve continuous and discontinuous problems in a unified way. In contrast to the three-node triangular element (Trig3), the Trig3-CNS element has higher order of approximations, much better accuracy and continuous nodal stress. Moreover, it is free from the “linear dependence” which otherwise cripples many of the partition of unity based methods with high order approximations. The purpose of the present work is to synergize the advantages of both the recently developed Trig3-CNS element and the NMM to precisely model two-dimensional linear elastic fracture problems. A number of numerical examples indicate the accuracy and robustness of the present Trig3-CNS (NMM) element.

[1]  Timon Rabczuk,et al.  Coupling of mesh‐free methods with finite elements: basic concepts and test results , 2006 .

[2]  T. Q. Bui,et al.  A consecutive-interpolation quadrilateral element (CQ4): Formulation and applications , 2014 .

[3]  Charles E. Augarde,et al.  A new partition of unity finite element free from the linear dependence problem and possessing the delta property , 2010 .

[4]  Guirong Liu,et al.  A LOCAL RADIAL POINT INTERPOLATION METHOD (LRPIM) FOR FREE VIBRATION ANALYSES OF 2-D SOLIDS , 2001 .

[5]  H. Zheng,et al.  Numerical manifold space of Hermitian form and application to Kirchhoff's thin plate problems , 2013 .

[6]  Xuhai Tang,et al.  A novel mesh-free poly-cell Galerkin method , 2009 .

[7]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[8]  Timon Rabczuk,et al.  Finite strain fracture of plates and shells with configurational forces and edge rotations , 2013 .

[9]  Feng Liu,et al.  Primal mixed solution to unconfined seepage flow in porous media with numerical manifold method , 2015 .

[10]  Chuangbing Zhou,et al.  Modeling Unconfined Seepage Flow Using Three-Dimensional Numerical Manifold Method , 2010 .

[11]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[12]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[13]  Guowei Ma,et al.  Footwall slope stability analysis with the numerical manifold method , 2011 .

[14]  Hong Zheng,et al.  Construct ‘FE-Meshfree’ Quad4 using mean value coordinates , 2015 .

[15]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[16]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[17]  N. Valizadeh,et al.  Extended isogeometric analysis for simulation of stationary and propagating cracks , 2012 .

[18]  F. Ren,et al.  Cover refinement of numerical manifold method for crack propagation simulation , 2014 .

[19]  Xuhai Tang,et al.  A novel twice-interpolation finite element method for solid mechanics problems , 2010 .

[20]  Sohichi Hirose,et al.  An extended consecutive-interpolation quadrilateral element (XCQ4) applied to linear elastic fracture mechanics , 2015 .

[21]  Robert W. Zimmerman,et al.  Energy conservative property of impulse‐based methods for collision resolution , 2013 .

[22]  Genki Yagawa,et al.  Linear dependence problems of partition of unity-based generalized FEMs , 2006 .

[23]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[24]  Feng Liu,et al.  Complementarity problem arising from static growth of multiple cracks and MLS-based numerical manifold method , 2015 .

[25]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[26]  Xiangmin Jiao,et al.  Generalized finite element method enrichment functions for curved singularities in 3D fracture mechanics problems , 2009 .

[27]  Chuanzeng Zhang,et al.  Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method , 2014 .

[28]  S. Rajendran,et al.  A partition-of-unity based ‘FE-Meshfree’ QUAD4 element with radial-polynomial basis functions for static analyses , 2011 .

[29]  Zhu Hehua Construction of physical cover approximation in manifold method based on least square interpolation , 2009 .

[30]  Yu-Min Lee,et al.  Mixed mode fracture propagation by manifold method , 2002 .

[31]  H. Zheng,et al.  A direct solution to linear dependency issue arising from GFEM , 2014 .

[32]  W. S. Venturini,et al.  MULTIPLE RANDOM CRACK PROPAGATION USING A BOUNDARY ELEMENT FORMULATION , 2011 .

[33]  Hong Zheng,et al.  A hybrid ‘FE-Meshless’ QUAD4 with continuous nodal stress using radial-polynomial basis functions , 2015 .

[34]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[35]  Guowei Ma,et al.  Numerical analysis of 2-D crack propagation problems using the numerical manifold method , 2010 .

[36]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[37]  Gen-Hua Shi,et al.  Manifold Method of Material Analysis , 1992 .

[38]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[39]  J. Z. Zhu,et al.  The finite element method , 1977 .

[40]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[41]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[42]  Bing Rong Miao,et al.  A TWICE-INTERPOLATION FINITE ELEMENT METHOD (TFEM) FOR CRACK PROPAGATION PROBLEMS , 2012 .

[43]  Xuhai Tang,et al.  A novel virtual node method for polygonal elements , 2009 .

[44]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .

[45]  Charles E. Augarde,et al.  Aspects of the use of orthogonal basis functions in the element‐free Galerkin method , 2009 .

[46]  Hong Zheng,et al.  New strategies for some issues of numerical manifold method in simulation of crack propagation , 2014 .

[47]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[48]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[49]  G. R. Liu,et al.  On Smoothed Finite Element Methods , 2010 .

[50]  张建海,et al.  A novel four-node quadrilateral element with continuous nodal stress , 2009 .

[51]  Hong Zheng,et al.  A three-node triangular element with continuous nodal stress , 2014 .

[52]  Louis Ngai Yuen Wong,et al.  Frictional crack initiation and propagation analysis using the numerical manifold method , 2012 .

[53]  Charles E. Augarde,et al.  A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields , 2014 .

[54]  Anthony R. Ingraffea,et al.  Three-dimensional fatigue crack propagation analysis using the boundary element method , 1988 .

[55]  YuanTong Gu,et al.  Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches , 2000 .

[56]  S. Rajendran,et al.  A ‘FE-Meshfree’ TRIA3 element based on partition of unity for linear and geometry nonlinear analyses , 2013 .

[57]  X. Zhuang,et al.  A continuous/discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling , 2013 .

[58]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[59]  T. Rabczuk,et al.  Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment , 2008 .

[60]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[61]  Hong Zheng,et al.  Application of the three-node triangular element with continuous nodal stress for free vibration analysis , 2016 .

[62]  Guowei Ma,et al.  Modeling complex crack problems using the numerical manifold method , 2009 .

[63]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[64]  Robert W. Zimmerman,et al.  Fracture and impulse based finite-discrete element modeling of fragmentation , 2013 .