Non-canonical mTORC1 signaling at the lysosome.

[1]  A. Pause,et al.  Folliculin impairs breast tumor growth by repressing TFE3-dependent induction of the Warburg effect and angiogenesis. , 2021, The Journal of clinical investigation.

[2]  A. Ballabio,et al.  GABARAP sequesters the FLCN-FNIP tumor suppressor complex to couple autophagy with lysosomal biogenesis , 2021, Science advances.

[3]  E. Henske,et al.  TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism , 2021, Nature Communications.

[4]  F. Sterky,et al.  Bi‐allelic VPS16 variants limit HOPS/CORVET levels and cause a mucopolysaccharidosis‐like disease , 2021, EMBO molecular medicine.

[5]  R. Pfundt,et al.  Neurodegenerative VPS41 variants inhibit HOPS function and mTORC1‐dependent TFEB/TFE3 regulation , 2021, EMBO molecular medicine.

[6]  E. Jacinto,et al.  Regulation and metabolic functions of mTORC1 and mTORC2. , 2021, Physiological reviews.

[7]  A. Gingras,et al.  The GATOR–Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids , 2020, Science.

[8]  A. Ballabio,et al.  LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury , 2020, Nature Cell Biology.

[9]  J. Hurley,et al.  Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9 , 2020, Nature Structural & Molecular Biology.

[10]  Chonglin Yang,et al.  CDK4/6 regulate lysosome biogenesis through TFEB/TFE3 , 2020, The Journal of cell biology.

[11]  A. Ballabio,et al.  A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome , 2020, Nature.

[12]  D. Sabatini,et al.  Dihydroxyacetone phosphate signals glucose availability to mTORC1 , 2020, Nature Metabolism.

[13]  A. Ballabio,et al.  TFEB regulates murine liver cell fate during development and regeneration , 2020, Nature Communications.

[14]  K. Nagashima,et al.  A FLCN-TFE3 Feedback Loop Prevents Excessive Glycogenesis and Phagocyte Activation by Regulating Lysosome Activity. , 2020, Cell reports.

[15]  D. Sabatini,et al.  mTOR at the nexus of nutrition, growth, ageing and disease , 2020, Nature Reviews Molecular Cell Biology.

[16]  J. Hurley,et al.  Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex , 2019, Science.

[17]  D. Sabatini,et al.  Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex , 2019, Cell.

[18]  D. Sabatini,et al.  Architecture of human Rag GTPase heterodimers and their complex with mTORC1 , 2019, Science.

[19]  D. Sabatini,et al.  Structural basis for the docking of mTORC1 on the lysosomal surface , 2019, Science.

[20]  C. Goding,et al.  MITF—the first 25 years , 2019, Genes & development.

[21]  E. Behrens,et al.  Myeloid Folliculin balances mTOR activation to maintain innate immunity homeostasis. , 2019, JCI insight.

[22]  A. Ballabio,et al.  MiT/TFE Family of Transcription Factors, Lysosomes, and Cancer. , 2019, Annual review of cancer biology.

[23]  K. Guan,et al.  mTOR as a central hub of nutrient signalling and cell growth , 2019, Nature Cell Biology.

[24]  Dirk Mossmann,et al.  mTOR signalling and cellular metabolism are mutual determinants in cancer , 2018, Nature Reviews Cancer.

[25]  H. Stenmark,et al.  ESCRT‐mediated lysosome repair precedes lysophagy and promotes cell survival , 2018, The EMBO journal.

[26]  E. Henske,et al.  Renal disease in tuberous sclerosis complex: pathogenesis and therapy , 2018, Nature Reviews Nephrology.

[27]  K. Borden,et al.  A TFEB nuclear export signal integrates amino acid supply and glucose availability , 2018, Nature Communications.

[28]  Maria Matarese,et al.  mTOR-dependent phosphorylation controls TFEB nuclear export , 2018, Nature Communications.

[29]  A. Ballabio,et al.  The complex relationship between TFEB transcription factor phosphorylation and subcellular localization , 2018, The EMBO journal.

[30]  S. Ferguson,et al.  GATOR1-dependent recruitment of FLCN–FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids , 2018, The Journal of cell biology.

[31]  R. Reenan,et al.  Nuclear Export Inhibition Enhances HLH-30/TFEB Activity, Autophagy, and Lifespan , 2018, Cell reports.

[32]  P. Hanson,et al.  Triggered recruitment of ESCRT machinery promotes endolysosomal repair , 2018, Science.

[33]  B. Phinney,et al.  Galectins Control mTOR in Response to Endomembrane Damage. , 2018, Molecular cell.

[34]  Geng Wu,et al.  Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane , 2017, Cell Discovery.

[35]  Kyle L. Morris,et al.  Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex. , 2017, Molecular cell.

[36]  K. Nakayama,et al.  Structural basis for the assembly of the Ragulator-Rag GTPase complex , 2017, Nature Communications.

[37]  N. Pavletich,et al.  Structural Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40 , 2017, Nature.

[38]  S. Gygi,et al.  SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway , 2017, Science.

[39]  H. Lindner,et al.  Crystal structure of the human lysosomal mTORC1 scaffold complex and its impact on signaling , 2017, Science.

[40]  A. Ballabio,et al.  mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy. , 2017, The Journal of clinical investigation.

[41]  A. Ballabio,et al.  Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth , 2017, Science.

[42]  R. Zoncu,et al.  Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann-Pick C1 signaling complex , 2017, Science.

[43]  A. Ballabio,et al.  TFE3 regulates whole‐body energy metabolism in cooperation with TFEB , 2017, EMBO molecular medicine.

[44]  David M. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[45]  D. Sabatini,et al.  mTOR Signaling in Growth, Metabolism, and Disease , 2017, Cell.

[46]  Ming O. Li,et al.  SZT2 dictates GATOR control of mTORC1 signalling , 2017, Nature.

[47]  J. Neilson,et al.  mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases , 2017, Nature Communications.

[48]  Gregory A. Wyant,et al.  KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1 , 2017, Nature.

[49]  A. Ballabio,et al.  Transcription Factor EB Controls Metabolic Flexibility during Exercise , 2017, Cell metabolism.

[50]  J. Blenis,et al.  The tumor suppressor FLCN mediates an alternate mTOR pathway to regulate browning of adipose tissue , 2016, Genes & development.

[51]  V. Deretic,et al.  TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis. , 2016, Developmental cell.

[52]  A. Ballabio,et al.  Modelling TFE renal cell carcinoma in mice reveals a critical role of WNT signaling , 2016, eLife.

[53]  A. Ballabio,et al.  TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages , 2016, Autophagy.

[54]  Gregory A. Wyant,et al.  The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway , 2016, Cell.

[55]  J. Asara,et al.  mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle , 2016, Science.

[56]  D. Sabatini,et al.  Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway , 2016, Science.

[57]  E. Thiele,et al.  Tuberous Sclerosis Complex , 2019, Harper's Textbook of Pediatric Dermatology.

[58]  W. Linehan,et al.  Molecular genetics and clinical features of Birt–Hogg–Dubé syndrome , 2015, Nature Reviews Urology.

[59]  K. Ross,et al.  Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism , 2015, Nature.

[60]  Björn Titz,et al.  MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells , 2015, Proceedings of the National Academy of Sciences.

[61]  Gregory A. Wyant,et al.  Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1 , 2015, Science.

[62]  François-Michel Boisvert,et al.  Glycogen Synthase Kinase-3 (GSK3) Inhibition Induces Prosurvival Autophagic Signals in Human Pancreatic Cancer Cells* , 2015, The Journal of Biological Chemistry.

[63]  G. Superti-Furga,et al.  SLC38A9 is a component of the lysosomal amino acid-sensing machinery that controls mTORC1 , 2014, Nature.

[64]  Wei Wang,et al.  Sestrins inhibit mTORC1 kinase activation through the GATOR complex. , 2014, Cell reports.

[65]  Steven P Gygi,et al.  The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. , 2014, Cell reports.

[66]  R. Nussbaum,et al.  Renal Cell Carcinoma in Tuberous Sclerosis Complex , 2014, The American journal of surgical pathology.

[67]  Nnamdi E. Ihuegbu,et al.  Innate host defense requires TFEB-mediated transcription of cytoprotective and antimicrobial genes. , 2014, Immunity.

[68]  J. Martina,et al.  The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris , 2014, Science Signaling.

[69]  D. Sabatini,et al.  The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1. , 2013, Molecular cell.

[70]  S. Ferguson,et al.  Recruitment of folliculin to lysosomes supports the amino acid–dependent activation of Rag GTPases , 2013, The Journal of cell biology.

[71]  Takeshi Noda,et al.  Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury , 2013, The EMBO journal.

[72]  W. Yang,et al.  Spatiotemporally controlled induction of autophagy-mediated lysosome turnover , 2013, Nature Communications.

[73]  A. Ballabio,et al.  TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop , 2013, Nature Cell Biology.

[74]  A. Ballabio,et al.  A RANKL-PKCβ-TFEB signaling cascade is necessary for lysosomal biogenesis in osteoclasts. , 2013, Genes & development.

[75]  Matthew Meyerson,et al.  A Tumor Suppressor Complex with GAP Activity for the Rag GTPases That Signal Amino Acid Sufficiency to mTORC1 , 2013, Science.

[76]  J. Asara,et al.  Stimulation of de Novo Pyrimidine Synthesis by Growth Signaling Through mTOR and S6K1 , 2013, Science.

[77]  H. Balderhaar,et al.  CORVET and HOPS tethering complexes – coordinators of endosome and lysosome fusion , 2013, Journal of Cell Science.

[78]  J. Martina,et al.  Rag GTPases mediate amino acid–dependent recruitment of TFEB and MITF to lysosomes , 2013, The Journal of cell biology.

[79]  O. Kirak,et al.  Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival , 2012, Nature.

[80]  T. Walther,et al.  The Transcription Factor TFEB Links mTORC1 Signaling to Transcriptional Control of Lysosome Homeostasis , 2012, Science Signaling.

[81]  Yong Chen,et al.  MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB , 2012, Autophagy.

[82]  A. Ballabio,et al.  A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB , 2012, The EMBO journal.

[83]  Roberto Zoncu,et al.  mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase , 2011, Science.

[84]  A. Ballabio,et al.  Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. , 2011, Human molecular genetics.

[85]  Anne E Carpenter,et al.  mTOR Complex 1 Regulates Lipin 1 Localization to Control the SREBP Pathway , 2011, Cell.

[86]  D. Corey,et al.  Regulation of TFEB and V-ATPases by mTORC1 , 2011, The EMBO journal.

[87]  Andrea Ballabio,et al.  TFEB Links Autophagy to Lysosomal Biogenesis , 2011, Science.

[88]  W. Lowrance,et al.  Renal oncocytosis: management and clinical outcomes. , 2011, The Journal of urology.

[89]  W. Linehan,et al.  Inactivation of the FLCN Tumor Suppressor Gene Induces TFE3 Transcriptional Activity by Increasing Its Nuclear Localization , 2010, PloS one.

[90]  D. Sabatini,et al.  Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids , 2010, Cell.

[91]  W. Linehan,et al.  Homozygous loss of BHD causes early embryonic lethality and kidney tumor development with activation of mTORC1 and mTORC2 , 2009, Proceedings of the National Academy of Sciences.

[92]  Nicolas Panchaud,et al.  The Vam6 GEF controls TORC1 by activating the EGO complex. , 2009, Molecular cell.

[93]  Valerio Embrione,et al.  A Gene Network Regulating Lysosomal Biogenesis and Function , 2009, Science.

[94]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[95]  Ximing J. Yang,et al.  Correction: Deficiency of FLCN in Mouse Kidney Led to Development of Polycystic Kidneys and Renal Neoplasia , 2008, PLoS ONE.

[96]  Claudio R. Santos,et al.  SREBP Activity Is Regulated by mTORC1 and Contributes to Akt-Dependent Cell Growth , 2008, Cell metabolism.

[97]  T. P. Neufeld,et al.  Regulation of TORC1 by Rag GTPases in nutrient response , 2008, Nature Cell Biology.

[98]  David M. Sabatini,et al.  The Rag GTPases Bind Raptor and Mediate Amino Acid Signaling to mTORC1 , 2008, Science.

[99]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[100]  P. Choyke,et al.  Kidney-targeted Birt-Hogg-Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. , 2008, Journal of the National Cancer Institute.

[101]  V. Stambolic,et al.  Localization of Rheb to the endomembrane is critical for its signaling function. , 2006, Biochemical and biophysical research communications.

[102]  F. Natt,et al.  Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Peter Choyke,et al.  Evaluation and management of renal tumors in the Birt-Hogg-Dubé syndrome. , 2005, The Journal of urology.

[104]  Joseph Avruch,et al.  Rheb Binds and Regulates the mTOR Kinase , 2005, Current Biology.

[105]  E. Hafen,et al.  Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. , 2004, Genes & development.

[106]  N. Copeland,et al.  Melanocytes and the microphthalmia transcription factor network. , 2004, Annual review of genetics.

[107]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[108]  J. Howell,et al.  A Novel Hypoxia-inducible Factor-independent Hypoxic Response Regulating Mammalian Target of Rapamycin and Its Targets* , 2003, Journal of Biological Chemistry.

[109]  J. Blenis,et al.  Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb , 2003, Current Biology.

[110]  K. Inoki,et al.  Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. , 2003, Genes & development.

[111]  J. Blenis,et al.  TOS Motif-Mediated Raptor Binding Regulates 4E-BP1 Multisite Phosphorylation and Function , 2003, Current Biology.

[112]  J. Avruch,et al.  The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif* , 2003, The Journal of Biological Chemistry.

[113]  K. Inoki,et al.  TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling , 2002, Nature Cell Biology.

[114]  J. Blenis,et al.  Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. , 2002, Molecular cell.

[115]  T. Nishimoto,et al.  Novel G Proteins, Rag C and Rag D, Interact with GTP-binding Proteins, Rag A and Rag B* , 2001, The Journal of Biological Chemistry.

[116]  S. Gygi,et al.  Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. , 1999, Genes & development.

[117]  James A. Vaught,et al.  microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. , 1994, Genes & development.