Generation of micro- and nano-morphologies on a stainless steel surface irradiated with 257 nm femtosecond laser pulses

Surface structuring by femtosecond lasers has emerged as an efficient tool to functionalize the surfaces of various solid materials. Laser induced periodic surface structures (LIPSS) can drastically impact the wetting, friction and optical properties of the surface depending on the size, aspect ratio and period of the structures. Morphological characteristics in the nanoscale, such as nano roughness, contributing to a hierarchical surface formation are considered to have a significant impact on those properties. In this study, we demonstrate for the first time to our knowledge the feasibility of inducing ripples and spikes utilizing a 257 nm femtosecond laser. LIPSS with a period smaller than 200 nm were realised. Furthermore, we show the evolution of those structures into conical spikes for this wavelength, and we provide an interpretation on their formation. Finally, we show that sub 200 nm LIPSS can create subwavelength gratings providing non-angular dependent light reflection and non-periodic morphologies showing super hydrophobic behaviour.

[1]  L. Seleznev,et al.  Topological evolution of self-induced silicon nanogratings during prolonged femtosecond laser irradiation , 2011 .

[2]  F. Costache,et al.  Femtosecond laser induced nanostructure formation: self-organization control parameters , 2008 .

[3]  J. Liu Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.

[4]  Uriel Levy,et al.  Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. , 2008, Optics letters.

[5]  E. Stratakis,et al.  Modelling periodic structure formation on 100Cr6 steel after irradiation with femtosecond-pulsed laser beams , 2018, 1812.02668.

[6]  Jörg Krüger,et al.  Femtosecond laser-induced periodic surface structures on silica , 2012 .

[7]  Jeff F. Young,et al.  Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass , 1983 .

[8]  K. Kolasinski,et al.  Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation , 2008 .

[9]  A. Rosenfeld,et al.  Laser-Induced Periodic Surface Structures— A Scientific Evergreen , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  K. Ou,et al.  Micro/Nano-Structuring of Medical Stainless Steel using Femtosecond Laser Pulses , 2012 .

[11]  Costas Fotakis,et al.  Bio-inspired water repellent surfaces produced by ultrafast laser structuring of silicon , 2009 .

[12]  Eric Audouard,et al.  Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps , 2005 .

[13]  Conical microspike morphology formation and control on various metal surfaces using femtosecond laser pulse , 2016 .

[14]  Costas Fotakis,et al.  Controlled ultrashort-pulse laser-induced ripple formation on semiconductors , 2014 .

[15]  K. Hane,et al.  High efficient light-emitting diodes with antireflection subwavelength gratings , 2002, IEEE Photonics Technology Letters.

[16]  Chunlei Guo,et al.  Colorizing metals with femtosecond laser pulses , 2008 .

[17]  C. Fotakis,et al.  Biomimetic surface structuring using cylindrical vector femtosecond laser beams , 2016, Scientific Reports.

[18]  Emmanuel Stratakis,et al.  Ripple formation on nickel irradiated with radially polarized femtosecond beams. , 2015, Optics letters.

[19]  Chengliang Sun,et al.  Magnetoelectric coupling in CoFe₂O₄/SrRuO₃/Pb(Zr[sub 0.52]Ti[sub 0.48])O₃ heteroepitaxial thin film structure , 2008 .

[20]  F. Ghasemi,et al.  Laser-assisted generation of periodic structures on a steel surface: A method for increasing microhardness , 2018 .

[21]  A. Ionin,et al.  Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses , 2011 .

[22]  Kenzo Miyazaki,et al.  Fluence dependence of femtosecond-laser-induced nanostructure formed on TiN and CrN , 2005 .

[23]  Jörg Krüger,et al.  Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air , 2013 .

[24]  J. Mazumder,et al.  Control of the wetting properties of an AISI 316L stainless steel surface by femtosecond laser-induced surface modification , 2012 .

[25]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .

[26]  Chunlei Guo,et al.  Direct femtosecond laser surface nano/microstructuring and its applications , 2013 .

[27]  Jörg Krüger,et al.  Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences , 2012 .

[28]  Martin B.G. Jun,et al.  Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures , 2011 .

[29]  Mool C. Gupta,et al.  Self-organized micro/nano structures in metal surfaces by ultrafast laser irradiation , 2010 .

[30]  A. Vorobyev,et al.  Multifunctional surfaces produced by femtosecond laser pulses , 2015 .

[31]  Inka Manek-Hönninger,et al.  Texturing metal surface with MHz ultra-short laser pulses. , 2017, Optics express.

[32]  William D. Brown,et al.  Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters , 1999 .

[33]  Daniel Poitras,et al.  Laser-induced plasmonic colours on metals , 2017, Nature Communications.

[34]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[35]  J. Toepel,et al.  Influence of femtosecond laser produced nanostructures on biofilm growth on steel , 2017 .

[36]  Costas Fotakis,et al.  Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in subablation conditions , 2012 .

[37]  Costas Fotakis,et al.  From ripples to spikes: A hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures , 2015, 1505.04381.

[38]  Rainer Kling,et al.  Surface blackening by laser texturing with high repetition rate femtosecond laser up to 1MHz , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[39]  Jörg Krüger,et al.  Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel , 2015 .

[40]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[41]  Philippe Lalanne,et al.  On the effective medium theory of subwavelength periodic structures , 1996 .

[42]  Jeff F. Young,et al.  Laser-induced periodic surface structure. I. Theory , 1983 .

[43]  Jörg Krüger,et al.  Femtosecond laser-induced periodic surface structures , 2012 .

[44]  E. Stratakis,et al.  Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. , 2017, Acta biomaterialia.

[45]  A. Rosenfeld,et al.  Femtosecond-laser-induced quasiperiodic nanostructures on TiO2 surfaces , 2009 .

[46]  J.Z.P. Skolski,et al.  Modeling laser-induced periodic surface structures: Finite-difference time-domain feedback simulations , 2014 .

[47]  Costas Fotakis,et al.  Biomimetic Artificial Surfaces Quantitatively Reproduce the Water Repellency of a Lotus Leaf , 2008 .

[48]  J. Siegel,et al.  Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel , 2017, Applied Physics A.