The Croonian lecture 2006 Structure of the living cell

The smallest viable unit of life is a single cell. To understand life, we need to visualize the structure of the cell as well as all cellular components and their complexes. This is a formidable task that requires sophisticated tools. These have developed from the rudimentary early microscopes of 350 years ago to a toolbox that includes electron microscopes, synchrotrons, high magnetic fields and vast computing power. This lecture briefly reviews the development of biophysical tools and illustrates how they begin to unravel the ‘molecular logic of the living state’.

[1]  Jun Qin,et al.  A Structural Mechanism of Integrin αIIbβ3 “Inside-Out” Activation as Regulated by Its Cytoplasmic Face , 2002, Cell.

[2]  Donald E. Ingber,et al.  Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels , 2006, Journal of Cell Science.

[3]  H. Schneckenburger Total internal reflection fluorescence microscopy: technical innovations and novel applications. , 2005, Current opinion in biotechnology.

[4]  Kenneth C Holmes,et al.  The molecular mechanism of muscle contraction. , 2005, Advances in protein chemistry.

[5]  I. Campbell,et al.  The talin-tail interaction places integrin activation on FERM ground. , 2004, Trends in biochemical sciences.

[6]  Paul Bertone,et al.  Advances in functional protein microarray technology , 2005, The FEBS journal.

[7]  Alan Hall,et al.  Rho GTPases: biochemistry and biology. , 2005, Annual review of cell and developmental biology.

[8]  Kurt Wüthrich,et al.  NMR studies of structure and function of biological macromolecules (Nobel Lecture)* , 2003, Journal of biomolecular NMR.

[9]  Yuval Garini,et al.  From micro to nano: recent advances in high-resolution microscopy. , 2005, Current opinion in biotechnology.

[10]  C. Woese A New Biology for a New Century , 2004, Microbiology and Molecular Biology Reviews.

[11]  A. Stoker,et al.  Protein tyrosine phosphatases and signalling. , 2005, The Journal of endocrinology.

[12]  Shimon Weiss,et al.  The power and prospects of fluorescence microscopies and spectroscopies. , 2003, Annual review of biophysics and biomolecular structure.

[13]  A. Fink Natively unfolded proteins. , 2005, Current opinion in structural biology.

[14]  Anna Huttenlocher,et al.  Calpain-mediated proteolysis of talin regulates adhesion dynamics , 2004, Nature Cell Biology.

[15]  Bartosz A Grzybowski,et al.  Molecular dynamics imaging in micropatterned living cells , 2005, Nature Methods.

[16]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[17]  T. Springer,et al.  Integrin structures and conformational signaling. , 2006, Current opinion in cell biology.

[18]  Joel E. Cohen,et al.  Mathematics Is Biology's Next Microscope, Only Better; Biology Is Mathematics' Next Physics, Only Better , 2004, PLoS biology.

[19]  J. Piehler New methodologies for measuring protein interactions in vivo and in vitro. , 2005, Current opinion in structural biology.

[20]  M. Ginsberg,et al.  Integrin regulation. , 2005, Current opinion in cell biology.

[21]  B. Sakmann Nobel Lecture. Elementary steps in synaptic transmission revealed by currents through single ion channels. , 1992, The EMBO journal.

[22]  Leslie Sue Lieberman,et al.  The logic of life: A History of Heredity. By F. Jacob. x + 348 pp. Princeton: Princeton University Press. 1993. $12.95 (paper) , 1993, American journal of human biology : the official journal of the Human Biology Council.

[23]  P. Cramer,et al.  The dynamic machinery of mRNA elongation. , 2005, Current opinion in structural biology.

[24]  R. Henderson,et al.  Three-dimensional model of purple membrane obtained by electron microscopy , 1975, Nature.

[25]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[26]  Niels Volkmann,et al.  Mechanism of Filament Nucleation and Branch Stability Revealed by the Structure of the Arp2/3 Complex at Actin Branch Junctions , 2005, PLoS biology.

[27]  John M Forrester On the reason of the movement of the muscles , 2001, Medical History.

[28]  Michael P. Sheetz,et al.  Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin , 2003, Nature.

[29]  Bert Sakmann,et al.  Elementary steps in synaptic transmission revealed by currents through single ion channels , 1992, Neuron.

[30]  T. Bhat,et al.  The Protein Data Bank and the challenge of structural genomics , 2000, Nature Structural Biology.

[31]  Sydney Brenner,et al.  Life sentences: Detective Rummage investigates , 2002, Genome Biology.

[32]  D. Bray Molecular Networks: The Top-Down View , 2003, Science.

[33]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 in Complex with an Arg-Gly-Asp Ligand , 2002, Science.

[34]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[35]  Michele Vendruscolo,et al.  Towards complete descriptions of the free–energy landscapes of proteins , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[36]  M. Vidal,et al.  Interactome: gateway into systems biology. , 2005, Human molecular genetics.

[37]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[38]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[39]  Gareth E. Jones,et al.  Cell motility under the microscope: Vorsprung durch Technik , 2004, Nature Reviews Molecular Cell Biology.

[40]  F. Harold,et al.  Molecules into Cells: Specifying Spatial Architecture , 2005, Microbiology and Molecular Biology Reviews.

[41]  Jeremy C Simpson,et al.  Localizing the proteome , 2003, Genome Biology.

[42]  M. Schliwa The evolving complexity of cytoplasmic structure , 2002, Nature Reviews Molecular Cell Biology.

[43]  W B Amos,et al.  How the Confocal Laser Scanning Microscope entered Biological Research , 2003, Biology of the cell.

[44]  F. Zernike How I discovered phase contrast. , 1955, Science.

[45]  D. Deamer,et al.  A giant step towards artificial life? , 2005, Trends in biotechnology.

[46]  Barry S. Coller,et al.  Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics , 2004, Nature.

[47]  Mark Yeager,et al.  Three-dimensional EM structure of the ectodomain of integrin αVβ3 in a complex with fibronectin , 2005, The Journal of cell biology.

[48]  G. Wanner,et al.  3D Analysis of chromosome architecture: advantages and limitations with SEM , 2005, Cytogenetic and Genome Research.

[49]  I. Bahar,et al.  Coarse-grained normal mode analysis in structural biology. , 2005, Current opinion in structural biology.

[50]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[51]  J. Yates,et al.  Proteomics of organelles and large cellular structures , 2005, Nature Reviews Molecular Cell Biology.

[52]  M G Rossmann,et al.  The beginnings of structural biology. Recollections, special section in honor of Max Perutz. , 1994, Protein Science.

[53]  T. Earnest,et al.  From words to literature in structural proteomics , 2003, Nature.

[54]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[55]  I. Campbell Modular proteins at the cell surface. , 2003, Biochemical Society transactions.

[56]  Dagmar Iber,et al.  The mechanism of cell differentiation in Bacillus subtilis , 2006, Nature.

[57]  J. Hörber,et al.  Scanning Probe Evolution in Biology , 2003, Science.

[58]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[59]  Christopher Martyn,et al.  A Short History of Nearly Everything , 2003, BMJ : British Medical Journal.

[60]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[61]  David Attwood,et al.  Microscopy: Nanotomography comes of age , 2006, Nature.

[62]  I. Khan The music of life , 1983 .

[63]  W. Baumeister Mapping molecular landscapes inside cells , 2004, Microscopy and Microanalysis.

[64]  Wenbin Wang Scanning Tunneling Microscopy , 2009 .

[65]  L. Kay,et al.  NMR studies of protein structure and dynamics. , 2005, Journal of magnetic resonance.

[66]  L. Ellerby Nanotomography comes of age , 2006 .

[67]  Ronald D Vale,et al.  The Molecular Motor Toolbox for Intracellular Transport , 2003, Cell.

[68]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[69]  R. Karlsson,et al.  SPR for molecular interaction analysis: a review of emerging application areas , 2004, Journal of molecular recognition : JMR.

[70]  David S Goodsell,et al.  Visual methods from atoms to cells. , 2005, Structure.

[71]  R. Green,et al.  The ribosome revealed , 1999, Nature Structural Biology.

[72]  R. Tsien Breeding molecules to spy on cells. , 2003, Harvey lectures.

[73]  A. Ashkin,et al.  Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[74]  A. Aderem Systems Biology: Its Practice and Challenges , 2005, Cell.

[75]  S. Harrison,et al.  Lipid–protein interactions in double-layered two-dimensional AQP0 crystals , 2005, Nature.

[76]  R. Russell,et al.  Structure‐based systems biology: a zoom lens for the cell , 2005, FEBS letters.

[77]  A. Klug,et al.  Three Dimensional Reconstructions of Spherical Viruses by Fourier Synthesis from Electron Micrographs , 1970, Nature.

[78]  Iain D. Campbell,et al.  The march of structural biology , 2002, Nature Reviews Molecular Cell Biology.

[79]  George Palade,et al.  Intracellular Aspects of the Process of Protein Synthesis , 1975, Science.

[80]  I D Campbell,et al.  Studies of protein-ligand interactions by NMR. , 2003, Biochemical Society transactions.

[81]  Michael G. Rossmann,et al.  The beginnings of structural biology , 1994 .

[82]  P. Lappalainen,et al.  Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. , 2004, Trends in cell biology.

[83]  Shimon Weiss,et al.  Single-Molecule Spectroscopy Comes of Age , 2001, Science.

[84]  R. Liddington,et al.  Structural Basis of Integrin Activation by Talin , 2007, Cell.

[85]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[86]  Alex Mogilner,et al.  On the edge: modeling protrusion. , 2006, Current opinion in cell biology.

[87]  E. Ruska,et al.  The development of the electron microscope and of electron microscopy , 1987 .

[88]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[89]  A. Claude The coming of age of the cell. , 1975, Science.

[90]  Sydney Brenner,et al.  Nature's Gift to Science (Nobel Lecture) , 2003, Chembiochem : a European journal of chemical biology.

[91]  S. Harrison,et al.  Whither structural biology? , 2004, Nature Structural &Molecular Biology.

[92]  S. Weiss,et al.  Chemical physics. Single-molecule spectroscopy comes of age. , 2001, Science.

[93]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[94]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .

[95]  Peter N. Campbell,et al.  Biochemistry (2nd edn) , 1995 .

[96]  E. Zamir,et al.  Molecular complexity and dynamics of cell-matrix adhesions. , 2001, Journal of cell science.