Adaptive probabilistic principal component analysis

Using the linear Gaussian latent variable model as a starting point we relax some of the constraints it imposes by deriving a nonparametric latent feature Gaussian variable model. This model introduces additional discrete latent variables to the original structure. The Bayesian nonparametric nature of this new model allows it to adapt complexity as more data is observed and project each data point onto a varying number of subspaces. The linear relationship between the continuous latent and observed variables make the proposed model straightforward to interpret, resembling a locally adaptive probabilistic PCA (A-PPCA). We propose two alternative Gibbs sampling procedures for inference in the new model and demonstrate its applicability on sensor data for passive health monitoring.

[1]  Thomas L. Griffiths,et al.  Infinite latent feature models and the Indian buffet process , 2005, NIPS.

[2]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[3]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[4]  Jun Zhu,et al.  DP-space: Bayesian Nonparametric Subspace Clustering with Small-variance Asymptotics , 2015, ICML.

[5]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[6]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Erik B. Sudderth,et al.  Memoized Online Variational Inference for Dirichlet Process Mixture Models , 2013, NIPS.

[8]  Thomas L. Griffiths,et al.  The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..

[9]  David B. Dunson,et al.  Compressive Sensing on Manifolds Using a Nonparametric Mixture of Factor Analyzers: Algorithm and Performance Bounds , 2010, IEEE Transactions on Signal Processing.

[10]  Neil D. Lawrence,et al.  Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data , 2003, NIPS.

[11]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[12]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[13]  Lawrence Carin,et al.  Nonparametric factor analysis with beta process priors , 2009, ICML '09.

[14]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[15]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[16]  N. Dobigeon,et al.  Bayesian nonparametric Principal Component Analysis , 2017, 1709.05667.

[17]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[18]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[19]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[20]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.