Convergence Properties of Overlapping Schwarz Domain Decomposition Algorithms

In this paper, we partially answer open questions about the convergence of overlapping Schwarz methods. We prove that overlapping Schwarz methods with Dirichlet transmission conditions for semilinear elliptic and parabolic equations always converge. While overlapping Schwarz methods with Robin transmission conditions only converge for semilinear parabolic equations, but not for semilinear elliptic ones. We then provide some conditions so that overlapping Schwarz methods with Robin transmission conditions converge for semilinear elliptic equations. Our new techniques can also be potentially applied to others kinds of partial differential equations.

[1]  Sébastien Loisel,et al.  On the geometric convergence of optimized Schwarz methods with applications to elliptic problems , 2010, Numerische Mathematik.

[2]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[3]  Frédéric Nataf,et al.  The Best Interface Conditions for Domain Decomposition Methods : Absorbing Boundary Conditions , .

[4]  Herbert B. Keller,et al.  Space-time domain decomposition for parabolic problems , 2002, Numerische Mathematik.

[5]  Bruno Després,et al.  A Domain Decomposition Method for the Helmholtz equation and related Optimal Control Problems , 1996 .

[6]  S. Lui On monotone iteration and Schwarz methods for nonlinear parabolic PDEs , 2003 .

[7]  Martin J. Gander,et al.  A waveform relaxation algorithm with overlapping splitting for reaction diffusion equations , 1999, Numer. Linear Algebra Appl..

[8]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[9]  S. Lui,et al.  On Monotone and Schwarz Alternating Methods for Nonlinear Elliptic PDEs , 2001 .

[10]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[11]  Jung-Han Kimn,et al.  A convergence theory for an overlapping Schwarz algorithm using discontinuous iterates , 2005, Numerische Mathematik.

[12]  Martin J. Gander,et al.  Overlapping Schwarz Waveform Relaxation for the Heat Equation in N Dimensions , 2002 .

[13]  Lori Badea On the Schwarz alternating method with more than two subdomains for nonlinear monotone problems , 1991 .

[14]  S. H. Lui,et al.  On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs , 2002, Numerische Mathematik.

[15]  Martin J. Gander,et al.  Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation , 1998, SIAM J. Sci. Comput..

[16]  Laurence Halpern,et al.  Optimized and Quasi-optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger Equation , 2010 .

[17]  Martin J. Gander,et al.  A homographic best approximation problem with application to optimized Schwarz waveform relaxation , 2009, Math. Comput..

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .

[20]  Martin J. Gander,et al.  Optimized Schwarz Waveform Relaxation Methods for Advection Reaction Diffusion Problems , 2007, SIAM J. Numer. Anal..

[21]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[22]  Frédéric Nataf,et al.  Convergence of domain decomposition methods via semi-classical calculus semiclassical calculus , 1998 .