Geometric Complexity III: on deciding positivity of Littlewood-Richardson coefficients

We point out that the remarkable Knutson and Tao Saturation Theorem and polynomial time algorithms for LP have together an important and immediate consequence in Geometric Complexity Theory. The problem of deciding positivity of Littlewood-Richardson coefficients for GLn(C) belongs to P. Furthermore, the algorithm is strongly polynomial. The main goal of this article is to explain the significance of this result in the context of Geometric Complexity Theory. Furthermore, it is also conjectured that an analogous result holds for arbitrary symmetrizable Kac-Moody algebras.

[1]  Ketan Mulmuley,et al.  Geometric Complexity Theory, P vs. NP and Explicit Obstructions , 2003 .

[2]  Masaki Kashiwara,et al.  Crystalizing theq-analogue of universal enveloping algebras , 1990 .

[3]  William Fulton,et al.  Eigenvalues of sums of Hermitian matrices [After A. Klyachko] , 1998 .

[4]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[5]  W. Fulton Eigenvalues of sums of hermitian matrices , 1998 .

[6]  Andrei Zelevinsky,et al.  Triple Multiplicities for sl(r + 1) and the Spectrum of the Exterior Algebra of the Adjoint Representation , 1992 .

[7]  T. Tao,et al.  The honeycomb model of _{}(ℂ) tensor products I: Proof of the saturation conjecture , 1999 .

[8]  Toshiki Nakashima,et al.  Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras , 1993 .

[9]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[10]  D. Mumford,et al.  Geometric Invariant Theory , 2011 .

[11]  Peter Littelmann,et al.  A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras , 1994 .

[12]  Christophe Tollu,et al.  Stretched Littlewood-Richardson and Kostka Coefficients , 2004 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  T. Tao,et al.  Honeycombs and sums of Hermitian matrices , 2000, math/0009048.

[15]  Andrei Zelevinsky,et al.  Littlewood-Richardson semigroups , 1997, math/9704228.

[16]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .