Hydrothermal Fabrication of Three‐Dimensional Secondary Battery Anodes

A generalized hydrothermal strategy for fabricating three-dimensional (3D) battery electrodes is presented. The hydrothermal growth deposits electrochemically active nanomaterials uniformly throughout the complex 3D mesostructure of the scaffold. Ni inverse opals coated with SnO2 nanoparticles or Co3O4 nanoplatelets, and SiO2 inverse opals coated with Fe3O4 are fabricated, all of which show attractive properties including good capacity retention and C-rate performances.

[1]  T. Truong,et al.  Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries. , 2012, ACS nano.

[2]  S. Aloni,et al.  Formation of hollow silica colloids through a spontaneous dissolution-regrowth process. , 2008, Angewandte Chemie.

[3]  D. He,et al.  Template-free synthesized Ni nanofoams as nanostructured current collectors for high-performance electrodes in lithium ion batteries , 2013 .

[4]  X. Lou,et al.  SnO₂-based nanomaterials: synthesis and application in lithium-ion batteries. , 2013, Small.

[5]  Rodney S. Ruoff,et al.  Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. , 2012, Nano letters.

[6]  Ruoxu Lin,et al.  Facile fabrication of reticular polypyrrole–silicon core–shell nanofibers for high performance lithium storage , 2012 .

[7]  P. Bruce,et al.  The lithium intercalation process in the low-voltage lithium battery anode Li(1+x)V(1-x)O2. , 2011, Nature materials.

[8]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[9]  Yang‐Kook Sun,et al.  Bottom-up in situ formation of Fe3O4 nanocrystals in a porous carbon foam for lithium-ion battery anodes , 2011 .

[10]  Jagjit Nanda,et al.  Electrode architectures for high capacity multivalent conversion compounds: iron (II and III) fluoride , 2014 .

[11]  A. Stein,et al.  Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition , 2008 .

[12]  Qiang Wang,et al.  In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries , 2007 .

[13]  R. Huggins Solid State Ionics , 1989 .

[14]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advances in Materials.

[15]  Yang‐Kook Sun,et al.  Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery , 2004 .

[16]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[17]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[18]  Zhen Zhou,et al.  Li ion battery materials with core-shell nanostructures. , 2011, Nanoscale.

[19]  Chun-hua Chen,et al.  Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance , 2010 .

[20]  M. Antonietti,et al.  Facile One-Pot Synthesis of Mesoporous SnO2 Microspheres via Nanoparticles Assembly and Lithium Storage Properties , 2008 .

[21]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[22]  Hollow Fe3O4 microspheres as anode materials for lithium-ion batteries , 2012 .

[23]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[24]  Fudong Han,et al.  Thermal formation of porous Fe3O4/C microspheres and the lithium storage performance , 2014 .

[25]  Jae-chun Lee,et al.  Reduction of SnO2 with Hydrogen , 2011 .

[26]  T. Brousse,et al.  Composite negative electrodes for lithium ion cells , 1998 .

[27]  H. Alshareef,et al.  Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes , 2013 .

[28]  Wei Chen,et al.  High energy density supercapacitors using macroporous kitchen sponges , 2012 .

[29]  T. Gustafsson,et al.  Self-supported three-dimensional nanoelectrodes for microbattery applications. , 2009, Nano letters.

[30]  Zaiping Guo,et al.  Plum-branch-like carbon nanofibers decorated with SnO2 nanocrystals. , 2010, Nanoscale.

[31]  Xiaoyong Fan,et al.  Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn–Co alloy/CNT composite , 2013, Ionics.

[32]  Jingshan Luo,et al.  Porous Hydroxide Nanosheets on Preformed Nanowires by Electrodeposition: Branched Nanoarrays for Electrochemical Energy Storage , 2012 .

[33]  John B Goodenough,et al.  Evolution of strategies for modern rechargeable batteries. , 2013, Accounts of chemical research.

[34]  Zhiwei Zhang,et al.  Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. , 2013, ACS applied materials & interfaces.

[35]  Paul V Braun,et al.  High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes , 2013, Nature Communications.

[36]  T. Sakai,et al.  Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector , 2010 .

[37]  Nannan Yan,et al.  Synthesis of sulfonic acid-functionalized Fe3O4@C nanoparticles as magnetically recyclable solid acid catalysts for acetalization reaction. , 2014, Dalton transactions.