Tapered whiskers are required for active tactile sensation

Many mammals forage and burrow in dark constrained spaces. Touch through facial whiskers is important during these activities, but the close quarters makes whisker deployment challenging. The diverse shapes of facial whiskers reflect distinct ecological niches. Rodent whiskers are conical, often with a remarkably linear taper. Here we use theoretical and experimental methods to analyze interactions of mouse whiskers with objects. When pushed into objects, conical whiskers suddenly slip at a critical angle. In contrast, cylindrical whiskers do not slip for biologically plausible movements. Conical whiskers sweep across objects and textures in characteristic sequences of brief sticks and slips, which provide information about the tactile world. In contrast, cylindrical whiskers stick and remain stuck, even when sweeping across fine textures. Thus the conical whisker structure is adaptive for sensor mobility in constrained environments and in feature extraction during active haptic exploration of objects and surfaces. DOI: http://dx.doi.org/10.7554/eLife.01350.001

[1]  D. Kleinfeld,et al.  Active Spatial Perception in the Vibrissa Scanning Sensorimotor System , 2007, PLoS biology.

[2]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[3]  M. Diamond Texture sensation through the fingertips and the whiskers , 2010, Current Opinion in Neurobiology.

[4]  D. Kleinfeld,et al.  Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system , 2009, Nature Neuroscience.

[5]  G. Debrégeas,et al.  Whisker encoding of mechanical events during active tactile exploration , 2012, Front. Behav. Neurosci..

[6]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[7]  K. Carl,et al.  Characterization of Statical Properties of Rat's Whisker System , 2012, IEEE Sensors Journal.

[8]  M. Hartmann,et al.  Mechanical Characteristics of Rat Vibrissae: Resonant Frequencies and Damping in Isolated Whiskers and in the Awake Behaving Animal , 2003, The Journal of Neuroscience.

[9]  Eugene W. Myers,et al.  Automated Tracking of Whiskers in Videos of Head Fixed Rodents , 2012, PLoS Comput. Biol..

[10]  Michael Brecht,et al.  Social facial touch in rats. , 2011, Behavioral neuroscience.

[11]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[12]  M. Diamond,et al.  Neuronal Activity in Rat Barrel Cortex Underlying Texture Discrimination , 2007, PLoS biology.

[13]  Pengwan Chen,et al.  Measurement of Young's modulus and Poisson's ratio of human hair using optical techniques , 2009, International Conference on Experimental Mechanics.

[14]  Nathan G. Clack,et al.  The Mechanical Variables Underlying Object Localization along the Axis of the Whisker , 2013, The Journal of Neuroscience.

[15]  M. Diamond,et al.  Neuronal Encoding of Texture in the Whisker Sensory Pathway , 2005, PLoS biology.

[16]  B. Sakmann,et al.  Unsupervised whisker tracking in unrestrained behaving animals. , 2008, Journal of neurophysiology.

[17]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[18]  Joseph H. Solomon,et al.  Biomechanics: Robotic whiskers used to sense features , 2006, Nature.

[19]  E. Ahissar,et al.  Responses of trigeminal ganglion neurons to the radial distance of contact during active vibrissal touch. , 2006, Journal of neurophysiology.

[20]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[21]  George T. H. Ellison,et al.  Group size, burrow structure and hoarding activity of pouched mice (Saccostomus campestris: Cricetidae) in southern Africa , 1993 .

[22]  William H. Press,et al.  Numerical recipes in C , 2002 .

[23]  E Ahissar,et al.  Temporal frequency of whisker movement. II. Laminar organization of cortical representations. , 2001, Journal of neurophysiology.

[24]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[25]  Joseph H. Solomon,et al.  The Morphology of the Rat Vibrissal Array: A Model for Quantifying Spatiotemporal Patterns of Whisker-Object Contact , 2011, PLoS Comput. Biol..

[26]  D. Simons Response properties of vibrissa units in rat SI somatosensory neocortex. , 1978, Journal of neurophysiology.

[27]  H. Bleckmann,et al.  Hydrodynamic Trail-Following in Harbor Seals (Phoca vitulina) , 2001, Science.

[28]  E. Kramer,et al.  The Advantages of a Tapered Whisker , 2010, PloS one.

[29]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[30]  M. Andermann,et al.  Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats , 2008, Neuron.

[31]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[32]  E. Ahissar,et al.  Vibrissal Kinematics in 3D: Tight Coupling of Azimuth, Elevation, and Torsion across Different Whisking Modes , 2008, Neuron.

[33]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[34]  Frederike D. Hanke,et al.  Harbor seal vibrissa morphology suppresses vortex-induced vibrations , 2010, Journal of Experimental Biology.

[35]  M. Hartmann,et al.  Variation in Young's modulus along the length of a rat vibrissa. , 2011, Journal of biomechanics.

[36]  T. Prescott,et al.  Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. , 2009, Journal of neurophysiology.

[37]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[38]  Dori Derdikman,et al.  Pre-neuronal morphological processing of object location by individual whiskers , 2013, Nature Neuroscience.

[39]  M. Nicolelis,et al.  Behavioral Properties of the Trigeminal Somatosensory System in Rats Performing Whisker-Dependent Tactile Discriminations , 2001, The Journal of Neuroscience.

[40]  M. Brecht,et al.  Tactile guidance of prey capture in Etruscan shrews , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  R. Masterton,et al.  The sensory contribution of a single vibrissa's cortical barrel. , 1986, Journal of neurophysiology.

[42]  Joseph H. Solomon,et al.  Biomechanical models for radial distance determination by the rat vibrissal system. , 2007, Journal of neurophysiology.

[43]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[44]  K. Svoboda,et al.  Neural Activity in Barrel Cortex Underlying Vibrissa-Based Object Localization in Mice , 2010, Neuron.

[45]  M. A. Neimark,et al.  Vibrissa Resonance as a Transduction Mechanism for Tactile Encoding , 2003, The Journal of Neuroscience.

[46]  Liping Liu THEORY OF ELASTICITY , 2012 .

[47]  R. J. Berry,et al.  The Ecology of an Island Population of the House Mouse , 1968 .

[48]  W. Welker,et al.  Coding of somatic sensory input by vibrissae neurons in the rat's trigeminal ganglion. , 1969, Brain research.

[49]  Nathan G. Clack,et al.  Vibrissa-Based Object Localization in Head-Fixed Mice , 2010, The Journal of Neuroscience.

[50]  J. Poulet,et al.  Synaptic Mechanisms Underlying Sparse Coding of Active Touch , 2011, Neuron.

[51]  S. B. Vincent The function of the vibrissae in the behavior of the white rat , 1912 .

[52]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[53]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[54]  M. Hartmann,et al.  Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa curvature and implications for tactile exploration. , 2012, Journal of neurophysiology.

[55]  Per Magne Knutsen,et al.  Haptic Object Localization in the Vibrissal System: Behavior and Performance , 2006, The Journal of Neuroscience.

[56]  E. A. Wright,et al.  The growth of rats and mice vibrissae under normal and some abnormal conditions. , 1975, Journal of embryology and experimental morphology.

[57]  D. Simons,et al.  Biometric analyses of vibrissal tactile discrimination in the rat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.