CLASSIFIER COMBINATION IN SPEECH RECOGNITION

In statistical pattern recognition, the principal task is to classify abstract data sets. Instead of using robust but computational expensive algorithms it is possible to combine `weak´ classifiers that can be employed in solving complex classification tasks. In this comparative study, we will examine the effectiveness of the commonly used hybrid schemes - especially those used for speech recognition problems - concentrating on cases which employ different combinations of classifiers.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[3]  Mukund Padmanabhan,et al.  Error corrective mechanisms for speech recognition , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[4]  Sridha Sridharan,et al.  Multi-Channel Sub-Band Speech Recognition , 2001, EURASIP J. Adv. Signal Process..

[5]  Jeff A. Bilmes,et al.  Dynamic classifier combination in hybrid speech recognition systems using utterance-level confidence values , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[6]  Thomas G. Dietterich Machine-Learning Research , 1997, AI Mag..

[7]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[9]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  James R. Glass,et al.  Heterogeneous measurements and multiple classifiers for speech recognition , 1998, ICSLP.

[12]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[13]  Erkki Oja,et al.  Methods for adaptive combination of classifiers with application to recognition of handwritten characters , 2003, Document Analysis and Recognition.

[14]  Jean-Luc Gauvain,et al.  Combining multiple speech recognizers using voting and language model information , 2000, INTERSPEECH.

[15]  R. Schapire The Strength of Weak Learnability , 1990, Machine Learning.

[16]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[17]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[18]  Andreas Stolcke,et al.  Finding consensus in speech recognition: word error minimization and other applications of confusion networks , 2000, Comput. Speech Lang..

[19]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[20]  János Csirik,et al.  A Comparative Study of Several Feature Transformation and Learning Methods for Phoneme Classification , 2000, Int. J. Speech Technol..

[21]  Brian Kan-Wing Mak Combining ANNs to improve phone recognition , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[22]  Jean-Luc Gauvain,et al.  Improved ROVER using Language Model Information , 2000 .

[23]  Thomas G. Dietterich Machine-Learning Research Four Current Directions , 1997 .