A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis

[1]  Daining Fang,et al.  A novel sub-step composite implicit time integration scheme for structural dynamics , 2017 .

[2]  D. Soares A simple and effective single‐step time marching technique based on adaptive time integrators , 2017 .

[3]  D. Fang,et al.  A quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipation , 2017 .

[4]  Donghuan Liu,et al.  Accuracy of a composite implicit time integration scheme for structural dynamics , 2017 .

[5]  K. Bathe,et al.  Transient implicit wave propagation dynamics with the method of finite spheres , 2016 .

[6]  W. Wen,et al.  A novel time integration method for structural dynamics utilizing uniform quintic B-spline functions , 2015 .

[7]  S. M. Spottswood,et al.  A robust composite time integration scheme for snap-through problems , 2015 .

[8]  Werner Wagner,et al.  Enhanced studies on a composite time integration scheme in linear and non-linear dynamics , 2015 .

[9]  K. Bathe,et al.  The method of finite spheres for wave propagation problems , 2014 .

[10]  Alexander V. Idesman,et al.  Accurate finite element modeling of acoustic waves , 2014, Comput. Phys. Commun..

[11]  K. Jian,et al.  An explicit time integration method for structural dynamics using septuple B‐spline functions , 2014 .

[12]  K. Bathe,et al.  Performance of an implicit time integration scheme in the analysis of wave propagations , 2013 .

[13]  Qingbin Li,et al.  An efficient backward Euler time-integration method for nonlinear dynamic analysis of structures , 2012 .

[14]  K. Bathe,et al.  Insight into an implicit time integration scheme for structural dynamics , 2012 .

[15]  Klaus-Jürgen Bathe,et al.  Crushing and crashing of tubes with implicit time integration , 2012 .

[16]  Jason R. Foley,et al.  Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error , 2011 .

[17]  Suchuan Dong,et al.  BDF-like methods for nonlinear dynamic analysis , 2010, J. Comput. Phys..

[18]  L. M. Bezerra,et al.  Performance of Composite Implicit Time Integration Scheme for Nonlinear Dynamic Analysis , 2008 .

[19]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[20]  K. Bathe,et al.  On a composite implicit time integration procedure for nonlinear dynamics , 2005 .

[21]  M. Guddati,et al.  Dispersion-reducing finite elements for transient acoustics , 2005 .

[22]  Kumar K. Tamma,et al.  Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics , 2004 .

[23]  T. Fung,et al.  Numerical dissipation in time-step integration algorithms for structural dynamic analysis , 2003 .

[24]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods , 2001 .

[25]  F. Armero,et al.  On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics , 2001 .

[26]  H. Cherukuri Dispersion analysis of numerical approximations to plane wave motions in an isotropic elastic solid , 2000 .

[27]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[28]  Patrick Smolinski,et al.  An implicit multi-time step integration method for structural dynamics problems , 1998 .

[29]  K. Bathe Finite Element Procedures , 1995 .

[30]  Jintai Chung,et al.  A new family of explicit time integration methods for linear and non‐linear structural dynamics , 1994 .

[31]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[32]  P. J. Pahl,et al.  Development of an implicit method with numerical dissipation from a generalized ingle-step algorithm for structural dynamics , 1988 .

[33]  O. C. Zienkiewicz,et al.  An alpha modification of Newmark's method , 1980 .

[34]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[35]  Kumar K. Tamma,et al.  The time dimension: A theory towards the evolution, classification, characterization and design of computational algorithms for transient/ dynamic applications , 2000 .

[36]  M. Dokainish,et al.  A survey of direct time-integration methods in computational structural dynamics—I. Explicit methods , 1989 .

[37]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[38]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .