Cyto- and receptor architectonic mapping of the human brain.

Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.

[1]  K. Grill-Spector,et al.  Two New Cytoarchitectonic Areas on the Human Mid‐Fusiform Gyrus , 2015, Cerebral cortex.

[2]  Carmen Martin-Ruiz,et al.  Nicotinic receptors in human brain: topography and pathology , 2000, Journal of Chemical Neuroanatomy.

[3]  Karl Zilles,et al.  ANATOMICAL ORGANIZATION OF THE HUMAN AUDITORY CORTEX: CYTOARCHITECTURE AND TRANSMITTER RECEPTORS , 2005 .

[4]  Sid Gilman,et al.  Autoradiographic localization of inhibitory and excitatory amino acid neurotransmitter receptors in human normal and olivopontocerebellar atrophy cerebellar cortex , 1990, Brain Research.

[5]  K Zilles,et al.  Regional distribution and heterogeneity of alpha-adrenoceptors in the rat and human central nervous system. , 1993, Journal fur Hirnforschung.

[6]  J. Palacios,et al.  The distribution of serotonin receptors in the human brain: high density of [3H]LSD binding sites in the raphe nuclei of the brainstem , 1983, Brain Research.

[7]  G. Sedvall,et al.  Autoradiographic localization of 5‐HT2A receptors in the human brain using [3H]M100907 and [11C]M100907 , 2000, Synapse.

[8]  A. Schleicher,et al.  Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp , 2016, Brain Structure and Function.

[9]  M. Preul The Human Brain: Surface, Blood Supply, and Three-Dimensional Sectional Anatomy , 2001 .

[10]  Karl Zilles,et al.  Transmitter Receptor Distribution in the Human Brain , 2015 .

[11]  J. Palacios,et al.  β-Adrenoceptor subtypes in the human brain: autoradiographic localization , 1985, Brain Research.

[12]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[13]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[14]  Yuichi Kimura,et al.  Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET , 2007, Synapse.

[15]  Jianjun Sun,et al.  Dopamine D1, D2, D3 Receptors, Vesicular Monoamine Transporter Type-2 (VMAT2) and Dopamine Transporter (DAT) Densities in Aged Human Brain , 2012, PloS one.

[16]  D J Brooks,et al.  Positron emission tomography analysis of [11C]KW‐6002 binding to human and rat adenosine A2A receptors in the brain , 2008, Synapse.

[17]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[18]  Simon B. Eickhoff,et al.  Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex , 2007, NeuroImage.

[19]  Michael Bloch,et al.  OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding. , 2016, Journal of affective disorders.

[20]  A. Schleicher,et al.  The human pattern of gyrification in the cerebral cortex , 2004, Anatomy and Embryology.

[21]  J. Penney,et al.  Neurochemical studies of human narcolepsy: alpha-adrenergic receptor autoradiography of human narcoleptic brain and brainstem. , 1994, Sleep.

[22]  K. Amunts,et al.  Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps , 2005, Anatomy and Embryology.

[23]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[24]  Agneta Nordberg,et al.  [3H]Acetylcholine nicotinic recognition sites in human brain: Characterization of agonist binding , 1987, Neuroscience Letters.

[25]  Nicolas Costes,et al.  A 18F-MPPF PET normative database of 5-HT1A receptor binding in men and women over aging. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  B. Merker Silver staining of cell bodies by means of physical development , 1983, Journal of Neuroscience Methods.

[27]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[28]  A. Schleicher,et al.  Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. , 2008, Cerebral cortex.

[29]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[30]  H. Kung,et al.  Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals , 2010, AGE.

[31]  Margaret A. Johnson,et al.  Nicotinic and muscarinic cholinergic receptor binding in the human hippocampal formation during development and aging. , 1997, Brain research. Developmental brain research.

[32]  K. Amunts,et al.  Anatomical Basis for Functional Specialization , 2015 .

[33]  A. Schleicher,et al.  Transmitter receptors and functional anatomy of the cerebral cortex , 2004, Journal of anatomy.

[34]  K. Neve,et al.  Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. , 1991, The Journal of pharmacology and experimental therapeutics.

[35]  Nadim Joni Shah,et al.  Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques , 2011, NeuroImage.

[36]  K. Zilles,et al.  Cingulate area 32 homologies in mouse, rat, macaque and human: Cytoarchitecture and receptor architecture , 2013, The Journal of comparative neurology.

[37]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the rat brain hippocampal region: Three-dimensional delineations based on magnetic resonance and diffusion tensor imaging , 2015, NeuroImage.

[38]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[39]  Robert M. Kessler,et al.  Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride , 1993, Brain Research.

[40]  Karl Zilles,et al.  In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography , 2003, NeuroImage.

[41]  S. Gauthier,et al.  Comparative Alterations of Nicotinic and Muscarinic Binding Sites in Alzheimer's and Parkinson's Diseases , 1992, Journal of neurochemistry.

[42]  Simon B. Eickhoff,et al.  Functional organization of human subgenual cortical areas: Relationship between architectonical segregation and connectional heterogeneity , 2015, NeuroImage.

[43]  Anat Biegon,et al.  Autoradiographic analysis of [3H]ketanserin binding in the human brain postmortem: effect of suicide , 1990, Brain Research.

[44]  Markus Mitterhauser,et al.  Hide and seek: a comparative autoradiographic in vitro investigation of the adenosine A3 receptor , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[45]  Susanne Walitza,et al.  REGION-SPECIFIC REGULATION OF THE SEROTONIN 2A RECEPTOR EXPRESSION IN DEVELOPMENT AND AGING IN POSTMORTEM HUMAN BRAIN , 2015, European Neuropsychopharmacology.

[46]  E K Perry,et al.  Regional patterns of cholinergic and glutamate activity in the developing and aging human brain. , 1993, Brain research. Developmental brain research.

[47]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[48]  Angela R. Laird,et al.  Modelling neural correlates of working memory: A coordinate-based meta-analysis , 2012, NeuroImage.

[49]  Á. Díaz,et al.  Regionally specific age-dependent decline in α 2-adrenoceptors: An autoradiographic study in human brain , 1991, Neuroscience Letters.

[50]  Paul J. Harrison,et al.  [3H]WAY–100635 for 5–HT1A receptor autoradiography in human brain: a comparison with [3H]8–OH–DPAT and demonstration of increased binding in the frontal cortex in schizophrenia , 1997, Neurochemistry International.

[51]  Anat Biegon,et al.  Autoradiographic analysis of age-dependent changes in serotonin 5-HT2 receptors of the human brain postmortem , 1990, Brain Research.

[52]  Lars Farde,et al.  Autoradiographic localisation of D3-dopamine receptors in the human brain using the selective D3-dopamine receptor agonist (+)-[3H]PD 128907 , 1996, Psychopharmacology.

[53]  K. Lloyd,et al.  An analysis of [3H]gamma-aminobutyric acid (GABA) binding in the human brain , 1979, Brain Research.

[54]  R.N.Dej.,et al.  The Cerebral Cortex of Man , 1951, Neurology.

[55]  A. Schleicher,et al.  The Somatosensory Cortex of Human: Cytoarchitecture and Regional Distributions of Receptor-Binding Sites , 1997, NeuroImage.

[56]  Karl Zilles,et al.  Elastische Anpassung in der digitalen Bildverarbeitung auf mehreren Auflösungsstufen mit Hilfe von Mehrgitterverfahren , 1997, DAGM-Symposium.

[57]  J. Palacios,et al.  Mapping dopamine receptors in the human brain. , 1988, Journal of neural transmission. Supplementum.

[58]  Smith Ge,et al.  A New Topographical Survey of the Human Cerebral Cortex, being an Account of the Distribution of the Anatomically Distinct Cortical Areas and their Relationship to the Cerebral Sulci. , 1907 .

[59]  J. Palacios,et al.  Adenosine A2 receptors: Selective localization in the human basal ganglia and alterations with disease , 1991, Neuroscience.

[60]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[61]  Richard L. M. Faull,et al.  Autoradiographic visualisation of [3H]DTG binding to σ receptors, [3H]TCP binding sites, and l-[3H]glutamate binding to NMDA receptors in human cerebellum , 1991, Neuroscience Letters.

[62]  Trygve B. Leergaard,et al.  Waxholm Space atlas of the Sprague Dawley rat brain , 2014, NeuroImage.

[63]  A. Schleicher,et al.  Cyto- and Myeloarchitecture of Human Visual Cortex and the Periodical GABAA Receptor Distribution , 1993 .

[64]  J. Palacios,et al.  Receptor localization in the human hypothalamus. , 1992, Progress in brain research.

[65]  J. Fastbom,et al.  Adenosine A1-receptors in human brain: Characterization and autoradiographic visualization , 1986, Neuroscience Letters.

[66]  K. Amunts,et al.  Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus , 2014, Human brain mapping.

[67]  R E Burke,et al.  Effect of Postmortem Factors on Muscarinic Receptor Subtypes in Rat Brain , 1987, Journal of neurochemistry.

[68]  J. Palacios,et al.  Benzodiazepine receptor sites in the human brain: Autoradiographic mapping , 1988, Neuroscience.

[69]  G. Vauquelin,et al.  Muscarinic cholinergic receptor subtypes in normal human brain and Alzheimer's presenile dementia , 1987, Journal of the Neurological Sciences.

[70]  C. Halldin,et al.  Variability in D2‐dopamine receptor density and affinity: A PET study with [11C]raclopride in man , 1995, Synapse.

[71]  Johannes Kornhuber,et al.  Effect of antemortem and postmortem factors on [3H]glutamate binding in the human brain , 1988, Neuroscience Letters.

[72]  E. Perry,et al.  Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine , 1999, Neuroscience.

[73]  Carol A. Barnes,et al.  Regional changes in the hippocampal density of AMPA and NMDA receptors across the lifespan of the rat , 2000, Brain Research.

[74]  Patrick Vanderheyden,et al.  Human M1-, M2- and M3-muscarinic cholinergic receptors: Binding characteristics of agonists and antagonists , 1990, Journal of the Neurological Sciences.

[75]  A. Schleicher,et al.  Organization of the Human Inferior Parietal Lobule Based on Receptor Architectonics , 2012, Cerebral cortex.

[76]  Simon B Eickhoff,et al.  Organizational principles of human visual cortex revealed by receptor mapping. , 2008, Cerebral cortex.

[77]  G. Bonin,et al.  The isocortex of man , 1951 .

[78]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[79]  A. Bauer,et al.  Quantitative receptor autoradiography in the human brain , 2004, Histochemistry.

[80]  Karl Zilles,et al.  Quantitative autoradiography of transmitter binding sites with an image analyzer , 1986, Journal of Neuroscience Methods.

[81]  Karl Zilles,et al.  Estimation of volume fractions in nervous tissue with an image analyzer , 1982, Journal of Neuroscience Methods.

[82]  J. Palacios,et al.  Dopamine receptors in human brain: Autoradiographic distribution of D1 sites , 1989, Neuroscience.

[83]  K. Amunts,et al.  Receptor mapping: architecture of the human cerebral cortex , 2009, Current opinion in neurology.

[84]  Roland D. Ciaranello,et al.  Influence of freezer storage time on cerebral biogenic amine and metabolite concentrations and receptor ligand binding characteristics , 1988, Brain Research.

[85]  D G Trist,et al.  [3H]MK-801 binding and the mRNA for the NMDAR1 subunit of the NMDA receptor are differentially distributed in human and rat forebrain. , 1998, Brain research. Molecular brain research.

[86]  H. Wikström,et al.  Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635 , 1997, Brain Research.

[87]  Pedro Rosa-Neto,et al.  Correlation between serotonin synthesis and 5-HT1A receptor binding in the living human brain: A combined α-[11C]MT and [18F]MPPF positron emission tomography study , 2008, NeuroImage.

[88]  Nicola Palomero-Gallagher,et al.  Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas , 2005, NeuroImage.

[89]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[90]  W Wisden,et al.  GABA(A) receptors: structure and function in the basal ganglia. , 2007, Progress in brain research.

[91]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[92]  J. Penney,et al.  Excitatory and inhibitory amino acid binding sites in human dentate nucleus , 1991, Brain Research.

[93]  Caryn Lerman,et al.  Decreased Nicotinic Receptor Availability in Smokers with Slow Rates of Nicotine Metabolism , 2015, The Journal of Nuclear Medicine.

[94]  Jeih-San Liow,et al.  The PET Radioligand 18F-FIMX Images and Quantifies Metabotropic Glutamate Receptor 1 in Proportion to the Regional Density of Its Gene Transcript in Human Brain , 2016, The Journal of Nuclear Medicine.

[95]  Á. Pazos,et al.  α2-Adrenoceptors in human forebrain: autoradiographic visualization and biochemical parameters using the agonist [3H]UK-14304 , 1988, Brain Research.

[96]  P J Whitehouse,et al.  Effects of Postmortem Delay and Temperature on Neurotransmitter Receptor Binding in a Rat Model of the Human Autopsy Process , 1984, Journal of neurochemistry.

[97]  C. Tanaka,et al.  GABAA receptor but not muscarinic receptor density was decreased in the brain of patients with Parkinson's disease. , 1988, Japanese journal of pharmacology.

[98]  J. Penney,et al.  Compartmentalization of excitatory amino acid receptors in human striatum. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Richard E. Carson,et al.  Reductions in Brain 5-HT1B Receptor Availability in Primarily Cocaine-Dependent Humans , 2014, Biological Psychiatry.

[100]  Á. Pazos,et al.  Adrenergic receptors in the cerebellum of olivopontocerebellar atrophy , 2005, Journal of Neural Transmission / General Section JNT.

[101]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[102]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[103]  Mary Johnson,et al.  Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia , 2001, Journal of Chemical Neuroanatomy.

[104]  Yuichi Kimura,et al.  Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[105]  E. Perry,et al.  Nicotinic receptor distribution in the human thalamus: autoradiographical localization of [3H]nicotine and [125I]α-bungarotoxin binding , 1997, Journal of Chemical Neuroanatomy.

[106]  Á. Pazos,et al.  Dopamine D1 and D2 receptors in progressive supranuclear palsy: An autoradiographic study , 1992, Annals of neurology.

[107]  Gudrun Wagenknecht,et al.  First-in-human PET quantification study of cerebral α4β2* nicotinic acetylcholine receptors using the novel specific radioligand (−)-[18F]Flubatine , 2015, NeuroImage.

[108]  J DeFelipe,et al.  Colocalization of glutamate ionotropic receptor subunits in the human temporal neocortex. , 2000, Cerebral cortex.

[109]  Jeremy M Crook,et al.  Decreased muscarinic receptor binding in subjects with schizophrenia: a study of the human hippocampal formation , 2000, Biological Psychiatry.

[110]  Koen Van Laere,et al.  Kinetic modeling and long‐term test‐retest reproducibility of the mGluR5 PET tracer 18F‐FPEB in human brain , 2016, Synapse.

[111]  S. Gauthier,et al.  Differential Alteration of Various Cholinergic Markers in Cortical and Subcortical Regions of Human Brain in Alzheimer's Disease , 1988, Journal of neurochemistry.

[112]  K. Zilles,et al.  Cyto-, Myelo-, and Receptor Architectonics of the Human Parietal Cortex , 2001, NeuroImage.

[113]  B. Winblad,et al.  Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia , 1992, Journal of neuroscience research.

[114]  Bengt Winblad,et al.  Muscarinic and nicotinic receptor changes in the cortex and thalamus of brains of chronic alcoholics , 1993, Brain Research.

[115]  Robert H. Perry,et al.  Autoradiographic distribution of [3H]nicotine binding in human cortex: Relative abundance in subicular complex , 1992, Journal of Chemical Neuroanatomy.

[116]  A. Campbell Histological Studies on the Localisation of Cerebral Function , 2009 .

[117]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[118]  Abraham Weizman,et al.  Unaltered α2-noradrenergic/imidazoline receptors in suicide victims: a postmortem brain autoradiographic analysis , 2000, European Neuropsychopharmacology.

[119]  J. Palacios,et al.  Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites , 1986, Brain Research.

[120]  Richard L. M. Faull,et al.  NMDA and kainic acid receptors have a complementary distribution to AMPA receptors in the human cerebellum , 1990, Brain Research.

[121]  A. Schleicher,et al.  Receptor architecture of human cingulate cortex: Evaluation of the four‐region neurobiological model , 2009, Human brain mapping.

[122]  Paul G. Ince,et al.  The distribution of excitatory amino acid receptors in the normal human midbrain and basal ganglia with implications for Parkinson's disease: a quantitative autoradiographic study using [3H]MK-801, [3H]glycine, [3H]CNQX and [3H]kainate , 1994, Brain Research.

[123]  Brett Connolly,et al.  Species differences in mGluR5 binding sites in mammalian central nervous system determined using in vitro binding with [18F]F-PEB. , 2007, Nuclear medicine and biology.

[124]  Karl Zilles,et al.  Neurotransmitter Receptor Imbalances in Motor Cortex and Basal Ganglia in Hepatic Encephalopathy , 2009, Cellular Physiology and Biochemistry.

[125]  Karl Zilles,et al.  Cytology and receptor architecture of human anterior cingulate cortex , 2008, The Journal of comparative neurology.

[126]  J. Palacios,et al.  Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.

[127]  Michela Gallagher,et al.  Hippocampal dependent learning ability correlates with N‐methyl‐D‐aspartate (NMDA) receptor levels in CA3 neurons of young and aged rats , 2001, The Journal of comparative neurology.

[128]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[129]  S S Stensaas,et al.  Autoradiographic Evidence of [3H]SCH 23390 Binding Site; in Human Prefrontal Cortex (Brodmann's Area 9) , 1987, Journal of neurochemistry.

[130]  M R Pranzatelli,et al.  Human brainstem serotonin receptors: characterization and implications for subcortical myoclonus. , 1996, Clinical neuropharmacology.

[131]  J. Palacios,et al.  Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies , 1986, Brain Research.

[132]  Horst Halling,et al.  Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. , 2003, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[133]  J. Palacios,et al.  Serotonin receptors in the human brain. II. Characterization and autoradiographic localization of 5-HT1C and 5-HT2 recognition sites , 1986, Brain Research.

[134]  Eveliina Arponen,et al.  Test–retest reliability of 11C-ORM-13070 in PET imaging of α2C-adrenoceptors in vivo in the human brain , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[135]  Christer Halldin,et al.  Dopamine D2 receptors in the rat, monkey and the post-mortem human hippocampus. An autoradiographic study using the novel D2-selective ligand 125I-NCQ 298 , 1991, Neuroscience Letters.

[136]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[137]  Y. Kubota,et al.  Regional and cellular localisation of GABAA receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study , 1999, The Journal of comparative neurology.

[138]  B. Dean,et al.  Low muscarinic receptor binding in prefrontal cortex from subjects with schizophrenia: a study of Brodmann's areas 8, 9, 10, and 46 and the effects of neuroleptic drug treatment. , 2001, The American journal of psychiatry.

[139]  R. Faull,et al.  The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain. , 2015, Advances in pharmacology.

[140]  P. Slater,et al.  High affinity serotonin binding sites in human brain: a comparison of cerebral cortex and basal ganglia , 2005, Journal of Neural Transmission.

[141]  E K Perry,et al.  Human brain neurochemistry - some postmortem problems. , 1983, Life sciences.

[142]  Á. Pazos,et al.  Autoradiographic distribution of M1, M2, M3, and M4 muscarinic receptor subtypes in Alzheimer's disease , 1997, Synapse.

[143]  J. Palacios,et al.  Dopamine receptors in human brain: Autoradiographic distribution of D2 sites , 1989, Neuroscience.

[144]  K. Zilles,et al.  Laminar distribution and co-distribution of neurotransmitter receptors in early human visual cortex , 2007, Brain Structure and Function.

[145]  D. Graham,et al.  5HT2 receptors in dementia of the Alzheimer type: A quantitative autoradiographic study of frontal cortex and hippocampus , 1990 .

[146]  R. Faull,et al.  Excitatory amino acid receptors in the human cerebral cortex: A quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine,l-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites , 1989, Neuroscience.

[147]  Xu-Feng Huang,et al.  Metabotropic glutamate receptor 5 binding and protein expression in schizophrenia and following antipsychotic drug treatment , 2013, Schizophrenia Research.

[148]  J. Penney,et al.  Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of huntington's disease , 1991, Annals of neurology.

[149]  Lars Hömke,et al.  A multigrid method for anisotropic PDEs in elastic image registration , 2006, Numer. Linear Algebra Appl..

[150]  C. Katona,et al.  Brain α-adrenoceptors in depressed suicides , 1997, Brain Research.

[151]  A. Schleicher,et al.  21 – Quantitative Analysis of Cyto- and Receptor Architecture of the Human Brain , 2002 .

[152]  K. Zilles,et al.  Comparative Analysis of Receptor Types That Identify Primary Cortical Sensory Areas , 2017 .

[153]  Prof. Dr. Heiko Braak,et al.  Architectonics of the Human Telencephalic Cortex , 1980, Studies of Brain Function.

[154]  Donatella Marazziti,et al.  Distribution of Serotonin Receptor of Type 6 (5-HT6) in Human Brain Post-mortem. A Pharmacology, Autoradiography and Immunohistochemistry Study , 2011, Neurochemical Research.

[155]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[156]  Sid Gilman,et al.  Two types of quisqualate receptors are decreased in human olivopontocerebellar atrophy cerebellar cortex , 1990, Brain Research.

[157]  J. Palacios,et al.  Human striosomes are enriched in 5‐HT2A receptors: autoradiographical visualization with [3H]MDL100,907, [125I](±)DOI and [3H]ketanserin , 1999, The European journal of neuroscience.

[158]  Agneta Nordberg,et al.  Regional distribution of subtypes of nicotinic receptors in human brain and effect of aging studied by (±)-[3 H]epibatidine , 1998, Brain Research.

[159]  Mary Johnson,et al.  Comparative distribution of binding of the muscarinic receptor ligands pirenzepine, AF-DX 384, (R,R)-I-QNB and (R,S)-I-QNB to human brain , 2002, Journal of Chemical Neuroanatomy.

[160]  Paul G. Ince,et al.  A quantitative autoradiographic study of [3H]kainate binding sites in the normal human spinal cord, brainstem and motor cortex , 1994, Brain Research.

[161]  J. Morrison,et al.  Neurofilament and calcium‐binding proteins in the human cingulate cortex , 1997, The Journal of comparative neurology.

[162]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[163]  Fumitoshi Kodaka,et al.  Serotonergic neurotransmission in the living human brain: A positron emission tomography study using [11C]dasb and [11C]WAY100635 in young healthy men , 2011, Synapse.

[164]  G. Vauquelin,et al.  Regional Distribution of α2A‐and α2B‐Adrenoceptor Subtypes in Postmortem Human Brain , 1992 .

[165]  G. Rizzolatti,et al.  Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: An intracortical microstimulation study in the macaque monkey , 1991, The Journal of comparative neurology.

[166]  José Guimón,et al.  Relationships between β- and α2-adrenoceptors and G coupling proteins in the human brain: effects of age and suicide , 2001, Brain Research.

[167]  Katarina Varnäs,et al.  Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [ 3 H ]SB-269970 , 2004, Neuroscience Letters.

[168]  Trygve B. Leergaard,et al.  3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas , 2016, Front. Neuroanat..

[169]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[170]  Heinz H. Coenen,et al.  Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[171]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[172]  A M Graybiel,et al.  Autoradiographic localization and biochemical characteristics of M1 and M2 muscarinic binding sites in the striatum of the cat, monkey, and human , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[173]  J. Kaas,et al.  Architectonic Subdivisions of Neocortex in the Galago (Otolemur garnetti) , 2010, Anatomical record.

[174]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[175]  K Zilles,et al.  A quantitative approach to cytoarchitectonics: Analysis of structural inhomogeneities in nervous tissue using an image analyser , 1990, Journal of microscopy.

[176]  R. Boellaard,et al.  Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder , 2008, Molecular Psychiatry.

[177]  E. Perry,et al.  Thalamic D2 receptors in dementia with Lewy bodies, Parkinson's disease, and Parkinson's disease dementia. , 2007, The international journal of neuropsychopharmacology.

[178]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[179]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[180]  A. Bauer,et al.  Regional and laminar distributions of α1-adrenoceptors and their subtypes in human and rat hippocampus , 1991, Neuroscience.

[181]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[182]  P. Morosan,et al.  Quantitative Architectural Analysis: A New Approach to Cortical Mapping , 2009, Journal of autism and developmental disorders.

[183]  Karl Zilles,et al.  The human parietal cortex: a novel approach to its architectonic mapping. , 2003, Advances in neurology.

[184]  J. Mcculloch,et al.  Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum , 1990, Annals of neurology.

[185]  A. Nordberg,et al.  Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined by [3H](-)nicotine, [3H]cytisine and [3H]epibatidine in vitro autoradiography , 1998, Neuroscience.

[186]  A. Biegon,et al.  Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide. , 1990, Archives of general psychiatry.

[187]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[188]  F. Mora,et al.  Glutamatergic neurotransmission in aging: a critical perspective , 2001, Mechanisms of Ageing and Development.

[189]  V J Cunningham,et al.  Neocortical abnormalities of [11C]-flumazenil PET in mesial temporal lobe epilepsy , 2001, Neurology.

[190]  J. Xuereb,et al.  Adenosine receptors in post‐mortem human brain , 1992, British journal of pharmacology.

[191]  J. Tanji,et al.  Changing concepts of motor areas of the cerebral cortex , 1989, Brain and Development.

[192]  Koen Van Laere,et al.  Positron Emission Tomography (PET) Quantification of GABAA Receptors in the Brain of Fragile X Patients , 2015, PloS one.

[193]  C D Marsden,et al.  Altered Muscarinic and Nicotinic Receptor Densities in Cortical and Subcortical Brain Regions in Parkinson's Disease , 1993, Journal of neurochemistry.

[194]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[195]  Paul G. Ince,et al.  The quantitative autoradiographic distribution of [3H]MK-801 binding sites in the normal human brainstem in relation to motor neuron disease , 1992, Brain Research.

[196]  Brian Dean,et al.  5-HT2A and muscarinic receptors in schizophrenia: a postmortem study , 2005, Neuroscience Letters.

[197]  K Zilles,et al.  Neurotransmitter receptors in the forebrain: regional and laminar distribution. , 1992, Progress in histochemistry and cytochemistry.

[198]  Donatella Marazziti,et al.  Distribution of [3H]GR65630 Binding in Human Brain Postmortem , 2001, Neurochemical Research.

[199]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[200]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[201]  Agneta Nordberg,et al.  Distribution of nicotinic receptors in human thalamus as visualized by3H- nicotine and3H-acetylcholine receptor autoradiography , 2005, Journal of Neural Transmission.

[202]  Katrin Amunts,et al.  Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus , 2013, Brain Structure and Function.

[203]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[204]  Ronald Boellaard,et al.  Quantification of the novel N-methyl-d-aspartate receptor ligand [11C]GMOM in man , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[205]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[206]  Mary Johnson,et al.  Autoradiographic comparison of cholinergic and other transmitter receptors in the normal human hippocampus , 1993, Hippocampus.

[207]  K. Amunts,et al.  Centenary of Brodmann's Map — Conception and Fate , 2022 .

[208]  Wolfgang Walkowiak,et al.  A comparative phylogenetic study of the distribution of cerebellar GABAA/benzodiazepine receptors using radioligands and monoclonal antibodies , 1988, Brain Research.

[209]  J. Palacios,et al.  Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: Brainstem , 1984, Neuroscience.

[210]  D Wyper,et al.  Nicotinic Acetylcholine Receptor Distribution in Alzheimer's Disease, Dementia with Lewy Bodies, Parkinson's Disease, and Vascular Dementia: In Vitro Binding Study Using 5-[125I]-A-85380 , 2004, Neuropsychopharmacology.

[211]  G. Mengod,et al.  Serotonin 1A receptors in human and monkey prefrontal cortex are mainly expressed in pyramidal neurons and in a GABAergic interneuron subpopulation: implications for schizophrenia and its treatment , 2008, Journal of neurochemistry.

[212]  A Panigrahy,et al.  Differential expression of glutamate receptor subtypes in human brainstem sites involved in perinatal hypoxia‐ischemia , 2000, The Journal of comparative neurology.

[213]  B. Dean,et al.  A change in the density of [(3)H]flumazenil, but not [(3)H]muscimol binding, in Brodmann's Area 9 from subjects with bipolar disorder. , 2001, Journal of affective disorders.

[214]  John O'Brien,et al.  Muscarinic receptors in basal ganglia in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease , 2003, Journal of Chemical Neuroanatomy.

[215]  R. Faull,et al.  Multiple benzodiazepine receptors in the human basal ganglia: A detailed pharmacological and anatomical study , 1988, Neuroscience.

[216]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[217]  Á. Pazos,et al.  Effects of freezing storage time on the density of muscarinic receptors in the human postmortem brain: an autoradiographic study in control and Alzheimer's disease brain tissues , 1996, Brain Research.

[218]  G. Reynolds,et al.  5‐Hydroxytryptamine (5‐HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases , 1995, British journal of pharmacology.

[219]  J. Marshall,et al.  Human striatal dopamine receptors are organized in compartments. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[220]  Angela D. Friederici,et al.  Common molecular basis of the sentence comprehension network revealed by neurotransmitter receptor fingerprints , 2015, Cortex.

[221]  Frank Roels,et al.  Autoradiographic localization of D1 and D2 dopamine receptors in the human brain , 1988, Neuroscience Letters.

[222]  João C. Villares,et al.  Age-Related Changes in the N-Methyl- d -aspartate Receptor Binding Sites within the Human Basal Ganglia , 2001, Experimental Neurology.

[223]  P. Morosan,et al.  Broca's Region: Novel Organizational Principles and Multiple Receptor Mapping , 2010, PLoS biology.

[224]  Jon H Kaas,et al.  Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans , 2014, Eye and brain.

[225]  R B Innis,et al.  Postmortem Stability of Monoamines, Their Metabolites, and Receptor Binding in Rat Brain Regibns , 1994, Journal of Neurochemistry.

[226]  Yehezkel Ben-Ari,et al.  Autoradiographic localization of kainic acid binding sites in the human hippocampus , 1985, Brain Research.

[227]  J. Marshall,et al.  Striosomal organization of cholinergic and dopaminergic uptake sites and cholinergic M1 receptors in the adult human striatum: a quantitative receptor autoradiographic study , 1990, Brain Research.

[228]  A. Schleicher,et al.  Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry , 2002, European Neuropsychopharmacology.

[229]  Donatella Marazziti,et al.  [3H]-YM-09151-2 binding sites in human brain postmortem , 2009, Neurochemistry International.

[230]  P. Hof,et al.  Regional distribution of neurofilament and calcium-binding proteins in the cingulate cortex of the macaque monkey. , 1992, Cerebral cortex.

[231]  Andrew J Lees,et al.  Muscarinic Receptors in the Thalamus in Progressive Supranuclear Palsy and Other Neurodegenerative Disorders , 2007, Journal of neuropathology and experimental neurology.

[232]  Á. Pazos,et al.  Autoradiographic demonstration of loss of α 2-adrenoceptors in progressive supranuclear palsy: preliminary report , 1993, Journal of the Neurological Sciences.

[233]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[234]  Elliott Richelson,et al.  Studies on Muscarinic Binding Sites in Human Brain Identified with [3H]Pirenzepine , 1986, Journal of neurochemistry.

[235]  Xu-Feng Huang,et al.  Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. , 2014, Journal of psychiatry & neuroscience : JPN.

[236]  J. Penney,et al.  Excitatory amino acid, GABA(A), and GABA(B) binding sites in human striate cortex. , 1991, Cerebral cortex.

[237]  Karl Zilles,et al.  Cyto‐ and receptor architecture of area 32 in human and macaque brains , 2013, The Journal of comparative neurology.

[238]  Nicola Palomero-Gallagher,et al.  Transmitter receptors reveal segregation of cortical areas in the human superior parietal cortex: Relations to visual and somatosensory regions , 2005, NeuroImage.

[239]  J. Fastbom,et al.  Adenosine A1 receptors in the human brain: A quantitative autoradiographic study , 1987, Neuroscience.

[240]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[241]  M R Crompton,et al.  Beta-adrenoceptors in human brain labelled with [3H]dihydroalprenolol and [3H]CGP 12177. , 1989, European journal of pharmacology.

[242]  Á. Pazos,et al.  Autoradiographic distribution of 5‐HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species , 2004, British journal of pharmacology.

[243]  M. Dragunow,et al.  Localisation of the adenosine uptake site in the human brain: a comparison with the distribution of adenosine Al receptors , 1996, Brain Research.