Numerical solution of a parabolic equation subject to specification of energy

[1]  Mehdi Dehghan,et al.  Saulyev'S Techniques For Solving A Parabolic Equation With A Non Linear Boundary Specification , 2003, Int. J. Comput. Math..

[2]  Mehdi Dehghan,et al.  Numerical solution of the three‐dimensional parabolic equation with an integral condition , 2002 .

[3]  R. Lazarov,et al.  Finite volume element approximations of nonlocal reactive flows in porous media , 2000 .

[4]  Mehdi Dehghan,et al.  Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition , 1999 .

[5]  Abba B. Gumel,et al.  On the numerical solution of the diffusion equation subject to the specification of mass , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[6]  E. H. Twizell,et al.  A family of fourth‐order parallel splitting methods for parabolic partial differential equations , 1997 .

[7]  Abdul-Qayyum M. Khaliq,et al.  Time-stepping algorithms for semidiscretized linear parabolic PDEs based on rational approximants with distinct real poles , 1996, Adv. Comput. Math..

[8]  John H. Cushman,et al.  Nonlocal Reactive Transport with Physical and Chemical Heterogeneity: Localization Errors , 1995 .

[9]  Gedeon Dagan,et al.  The significance of heterogeneity of evolving scales to transport in porous formations , 1994 .

[10]  Timothy R. Ginn,et al.  Nonlocal dispersion in media with continuously evolving scales of heterogeneity , 1993 .

[11]  A. Matheson,et al.  A numerical procedure for diffusion subject to the specification of mass , 1993 .

[12]  J. G. Verwer,et al.  Solving parabolic integro-differential equations by an explicit integration method , 1992 .

[13]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[14]  Gunnar Ekolin,et al.  Finite difference methods for a nonlocal boundary value problem for the heat equation , 1991 .

[15]  Graeme Fairweather,et al.  The Reformulation and Numerical Solution of Certain Nonclassical Initial-Boundary Value Problems , 1991, SIAM J. Sci. Comput..

[16]  John R. Cannon,et al.  A class of non-linear non-classical parabolic equations , 1989 .

[17]  Karl Kunisch,et al.  A reaction-diffusion system arising in modelling man-environment diseases , 1988 .

[18]  John R. Cannon,et al.  A Galerkin procedure for the diffusion equation subject to the specification of mass , 1987 .

[19]  Jan ter Maten,et al.  Splitting methods for fourth order parabolic partial differential equations , 1986, Computing.

[20]  Avner Friedman,et al.  Monotonic decay of solutions of parabolic equations with nonlocal boundary conditions , 1986 .

[21]  John van der Hoek,et al.  Diffusion subject to the specification of mass , 1986 .

[22]  M. Holt,et al.  Numerical Solutions of Partial Differential Equations , 1983 .

[23]  William Alan Day,et al.  Extensions of a property of the heat equation to linear thermoelasticity and other theories , 1982 .

[24]  A. R. Gourlay,et al.  The Extrapolation of First Order Methods for Parabolic Partial Differential Equations, II , 1978 .

[25]  Edward H. Twizell,et al.  A family of third-order parallel splitting methods for parabolic partial differential equations , 1998, Int. J. Comput. Math..

[26]  Keng Deng,et al.  Comparison principle for some nonlocal problems , 1992 .

[27]  Lin Yanping,et al.  A numerical method for the diffusion equation with nonlocal boundary specifications , 1990 .

[28]  Lin Yanping,et al.  An implicit finite difference scheme for the diffusion equation subject to mass specification , 1990 .

[29]  Michael Renardy,et al.  Mathematical problems in viscoelasticity , 1987 .

[30]  E. H. Twizell Computational methods for partial differential equations , 1984 .

[31]  W. A. Day A decreasing property of solutions of parabolic equations with applications to thermoelasticity , 1983 .