Determination of in situ stress orientation from borehole guided waves

We have analyzed the horizontal particle motion of borehole guided waves from three-component vertical seismic profile data recorded from three experiments. The polarization directions of the guided waves are consistent with the direction of horizontal principal stress determined independently. We suggest that stress-induced velocity anisotropy in the rock adjacent to the borehole appears to cause antisymmetric flexural guided modes to be polarized in the direction of the maximum horizontal principal stress. Thus analysis of the horizontal particle motion of borehole guided waves appears to represent a new method for determining the orientation of horizontal principal stresses.

[1]  Maurice A. Biot,et al.  Propagation of elastic waves in a cylindrical bore containing a fluid , 1952 .

[2]  M. Nafi Toksöz,et al.  Generation, Propagation And Analysis Of Tube Waves In A Borehole , 1982 .

[3]  A. Nur Effects of stress and fluid inclusions on wave propagation in rock , 1969 .

[4]  M. King Hubbert,et al.  Mechanics of Hydraulic Fracturing , 1972 .

[5]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[6]  R. Stesky Compressional and shear velocities of dry and saturated jointed rock: a laboratory study , 1985 .

[7]  F. Neumann An analysis of the S -wave , 1930 .

[8]  J. E. White MOTION PRODUCT SEISMOGRAMS , 1964 .

[9]  Bob A. Hardage,et al.  Vertical seismic profiling , 1985 .

[10]  Stuart Crampin,et al.  Seismic-wave propagation through a cracked solid: polarization as a possible dilatancy diagnostic , 1978 .

[11]  J. H. Rosenbaum,et al.  Acoustic waves from an impulsive source in a fluid‐filled borehole , 1966 .

[12]  S. Crampin A review of the effects of anisotropic layering on the propagation of seismic waves , 1977 .

[13]  R. Stephen Seismic anisotropy observed in upper oceanic crust , 1981 .

[14]  Gene Simmons,et al.  Stress‐induced velocity anisotropy in rock: An experimental study , 1969 .

[15]  S. Crampin,et al.  Estimating crack parameters from observations of P-wave velocity anisotropy , 1980 .

[16]  S. Crampin Shear Wave Polarizations: A Plea For Three-Component Recording , 1983 .

[17]  Amos Nur,et al.  Effects of stress on velocity anisotropy in rocks with cracks , 1971 .

[18]  Bob A. Hardage,et al.  Vertical Seismic Profiling, Part A: Principles , 1985 .

[19]  S. Crampin,et al.  Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of higher mode seismic surface waves , 1977 .

[20]  O. Stephansson,et al.  A seismic study of shallow jointed rocks , 1979 .

[21]  B. Sjogren,et al.  SEISMIC CLASSIFICATION OF ROCK MASS QUALITIES , 1979 .

[22]  T. V. McEvilly,et al.  Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion , 1964 .

[23]  Daniel Moos,et al.  In Situ Studies of Velocity in Fractured Crystalline Rocks , 1983 .

[24]  R. Kovach,et al.  Pressure-induced velocity gradient: An alternative to a Pg refractor in the Gabilan Range, central California , 1979 .

[25]  S. Solomon Seismic-wave attenuation and partial melting in the upper mantle of North America , 1972 .

[26]  Mark D. Zoback,et al.  State of stress in the conterminous United States , 1980 .

[27]  Keiiti Aki,et al.  A precise, continuous measurement of seismic velocity for monitoring in situ stress , 1974 .