An Algorithmic Version of the Hypergraph Regularity Method

Extending the Szemeredi regularity lemma for graphs, P. Frankl and V. Rodl [Random Structures Algorithms, 20 (2002), pp. 131-164] established a 3-graph regularity lemma triple systems ${\cal G}_n$ admit bounded partitions of their edge sets, most classes of which consist of regularly distributed triples. Many applications of this lemma require a companion counting lemma [B. Nagle and V. Rodl, Random Structures Algorithms, 23 (2003), pp. 264-332] allowing one to find and enumerate subhypergraphs of a given isomorphism type in a “dense and regular” environment created by the 3-graph regularity lemma. Combined applications of these lemmas are known as the 3-graph regularity method. In this paper, we provide an algorithmic version of the 3-graph regularity lemma which, as we show, is compatible with a counting lemma. We also discuss some applications.

[1]  R. Graham,et al.  Quasi-random set systems , 1991 .

[2]  Yoshiharu Kohayakawa,et al.  Hereditary Properties of Triple Systems , 2003, Combinatorics, Probability and Computing.

[3]  Vojtech Rödl,et al.  An algorithmic version of the hypergraph regularity method , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[4]  Vojtech Rödl,et al.  Ramsey Properties of Random Hypergraphs , 1998, J. Comb. Theory, Ser. A.

[5]  Vojtech Rödl,et al.  An Algorithmic Regularity Lemma for Hypergraphs , 2000, SIAM J. Comput..

[6]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[7]  Alan M. Frieze,et al.  The regularity lemma and approximation schemes for dense problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[8]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[9]  Vojtech Rödl,et al.  The algorithmic aspects of the regularity lemma , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[10]  Yoshiharu Kohayakawa,et al.  Efficient Testing of Hypergraphs , 2002, ICALP.

[11]  Noga Alon,et al.  Additive approximation for edge-deletion problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[12]  József Solymosi,et al.  A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.

[13]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, Comb..

[14]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[15]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[16]  N. Alon,et al.  The Algorithmic Aspects of the Regularity Lemma (Extended Abstract) , 1992, FOCS 1992.

[17]  Yoshiharu Kohayakawa,et al.  An optimal algorithm for checking regularity: (extended abstract) , 2002, SODA '02.

[18]  Andrew Thomason Dense expanders and pseudo-random bipartite graphs , 1989, Discret. Math..

[19]  V. Rödl,et al.  Extremal problems on set systems , 2002 .

[20]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[21]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[22]  Fan Chung Graham,et al.  Regularity Lemmas for Hypergraphs and Quasi-randomness , 1991, Random Struct. Algorithms.

[23]  Vojtech Rödl,et al.  Integer and Fractional Packings in Dense Graphs , 2001, Comb..

[24]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[25]  Vojtech Rödl,et al.  Integer and fractional packings in dense 3-uniform hypergraphs , 2003, Random Struct. Algorithms.

[26]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[27]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[28]  Lubos Thoma,et al.  Bipartite Subgraphs and Quasi-Randomness , 2004, Graphs Comb..

[29]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[30]  Vojtech Rödl,et al.  Two Proofs of the Ramsey Property of the Class of Finite Hypergraphs , 1982, Eur. J. Comb..

[31]  Vojtech Rödl,et al.  A Dirac-Type Theorem for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[32]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[33]  Vojtech Rödl,et al.  On characterizing hypergraph regularity , 2002, Random Struct. Algorithms.

[34]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[35]  Michael Tarsi,et al.  Graph decomposition is NPC - a complete proof of Holyer's conjecture , 1992, STOC '92.

[36]  Yoshiharu Kohayakawa,et al.  An Optimal Algorithm for Checking Regularity , 2003, SIAM J. Comput..

[37]  Vojtech Rödl,et al.  The Uniformity Lemma for hypergraphs , 1992, Graphs Comb..

[38]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[39]  Vojtech Rödl,et al.  The asymptotic number of triple systems not containing a fixed one , 2001, Discret. Math..