Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold

Abstract Local asymptotic stability analysis is conducted for an initial-boundary-value problem of a Korteweg–de Vries equation posed on a finite interval [ 0 , 2 ⁢ π ⁢ 7 / 3 ] {[0,2\pi\sqrt{7/3}]} . The equation comes with a Dirichlet boundary condition at the left end-point and both the Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the associated linearized equation around the origin is not asymptotically stable. In this paper, the nonlinear Korteweg–de Vries equation is proved to be locally asymptotically stable around the origin through the center manifold method. In particular, the existence of a two-dimensional local center manifold is presented, which is locally exponentially attractive. Analyzing the Korteweg–de Vries equation restricted on the local center manifold, we obtain a polynomial decay rate of the solution.

[1]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[2]  P. Olver Nonlinear Systems , 2013 .

[3]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.

[4]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[5]  Fábio Natali,et al.  An example of non-decreasing solution for the KdV equation posed on a bounded interval , 2014 .

[6]  B. Hassard,et al.  Theory and applications of Hopf bifurcation , 1981 .

[7]  Eduardo Cerpa,et al.  Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain , 2009 .

[8]  Jean-Michel Coron,et al.  Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths , 2013, 1306.3637.

[9]  M. Boussinesq Essai sur la théorie des eaux courantes , 1873 .

[10]  J. Lions Controlabilite exacte, perturbations et stabilisation de systemes distribues , 1988 .

[11]  Eduardo Cerpa,et al.  Exact Controllability of a Nonlinear Korteweg--de Vries Equation on a Critical Spatial Domain , 2007, SIAM J. Control. Optim..

[12]  J. Coron Control and Nonlinearity , 2007 .

[13]  M. Haragus,et al.  Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems , 2010 .

[14]  Enrique Zuazua,et al.  Stabilization of the Korteweg-De Vries equation with localized damping , 2002 .

[15]  D. Korteweg,et al.  On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 2011 .

[16]  R. Nagel Spectral and asymptotic properties of strongly continuous semigroups , 1993 .

[17]  Jean-Michel Coron,et al.  Exact boundary controllability of a nonlinear KdV equation with critical lengths , 2004 .

[18]  J. Carr Applications of Centre Manifold Theory , 1981 .

[19]  Peter W. Bates,et al.  Invariant Manifolds for Semilinear Partial Differential Equations , 1989 .

[20]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[21]  O. B. Lykova,et al.  On the reduction principle in the theory of stability of motion , 1993 .

[22]  A. Kelley The stable, center-stable, center, center-unstable, unstable manifolds , 1967 .

[23]  Lionel Rosier,et al.  Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain , 1997 .

[24]  Jianhong Wu,et al.  Invariant manifolds of partial functional differential equations , 2004 .