A Real-Time Biosensor for ERK Activity Reveals Signaling Dynamics during C. elegans Cell Fate Specification.

[1]  Dirk Fey,et al.  Frequency modulation of ERK activation dynamics rewires cell fate , 2016, Molecular systems biology.

[2]  D. Dickinson,et al.  CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering , 2016, Genetics.

[3]  Henry H. Mattingly,et al.  A Transport Model for Estimating the Time Course of ERK Activation in the C. elegans Germline. , 2015, Biophysical Journal.

[4]  Michael Pargett,et al.  Receptor Level Mechanisms Are Required for Epidermal Growth Factor (EGF)-stimulated Extracellular Signal-regulated Kinase (ERK) Activity Pulses* , 2015, The Journal of Biological Chemistry.

[5]  B. Kholodenko,et al.  The dynamic control of signal transduction networks in cancer cells , 2015, Nature Reviews Cancer.

[6]  I. Greenwald,et al.  Dimerization-driven degradation of C. elegans and human E proteins , 2015, Genes & development.

[7]  Ioannis G. Kevrekidis,et al.  Dynamics of Inductive ERK Signaling in the Drosophila Embryo , 2015, Current Biology.

[8]  D. Dickinson,et al.  Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette , 2015, Genetics.

[9]  Honda Naoki,et al.  Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin , 2015, eLife.

[10]  A. Fire,et al.  A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. , 2014, Developmental cell.

[11]  Jacob J. Hughey,et al.  High-Sensitivity Measurements of Multiple Kinase Activities in Live Single Cells , 2014, Cell.

[12]  D. Moerman,et al.  Random and targeted transgene insertion in C. elegans using a modified Mosl transposon , 2014, Nature Methods.

[13]  S. Jarriault,et al.  Simultaneous Expression of Multiple Proteins Under a Single Promoter in Caenorhabditis elegans via a Versatile 2A-Based Toolkit , 2013, Genetics.

[14]  Kazuhiro Aoki,et al.  Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. , 2013, Molecular cell.

[15]  M. Sundaram,et al.  Canonical RTK-Ras-ERK signaling and related alternative pathways , 2013, WormBook : the online review of C. elegans biology.

[16]  John G. Albeck,et al.  Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. , 2013, Molecular cell.

[17]  Jeroen S. van Zon,et al.  Robustness and Epistasis in the C. Elegans Vulval Signaling Network Revealed by Pathway Dosage Modulation , 2022 .

[18]  I. Greenwald,et al.  SEL-10/Fbw7-dependent negative feedback regulation of LIN-45/Braf signaling in C. elegans via a conserved phosphodegron. , 2012, Genes & development.

[19]  Taichiro Tomida,et al.  The Temporal Pattern of Stimulation Determines the Extent and Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron , 2012, Science Signaling.

[20]  M. Davis,et al.  Improved Mos1-mediated transgenesis in C. elegans , 2012, Nature Methods.

[21]  I. Greenwald,et al.  Spatial Regulation of lag-2 Transcription During Vulval Precursor Cell Fate Patterning in Caenorhabditis eleganslag-2 , 2011, Genetics.

[22]  T. Schedl,et al.  MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. , 2011, Developmental cell.

[23]  C. Rubin,et al.  A RasGRP, C. elegans RGEF-1b, Couples External Stimuli to Behavior by Activating LET-60 (Ras) in Sensory Neurons , 2011, Neuron.

[24]  Anne E Carpenter,et al.  Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software , 2011, Bioinform..

[25]  Yosef Yarden,et al.  Feedback regulation of EGFR signalling: decision making by early and delayed loops , 2011, Nature Reviews Molecular Cell Biology.

[26]  Haluk Resat,et al.  Rapid and sustained nuclear–cytoplasmic ERK oscillations induced by epidermal growth factor , 2009, Molecular systems biology.

[27]  T. Schedl,et al.  Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development , 2009, Proceedings of the National Academy of Sciences.

[28]  K. Svoboda,et al.  A genetically encoded fluorescent sensor of ERK activity , 2008, Proceedings of the National Academy of Sciences.

[29]  Christian Braendle,et al.  Plasticity and errors of a robust developmental system in different environments. , 2008, Developmental cell.

[30]  G. Seydoux,et al.  3′ UTRs Are the Primary Regulators of Gene Expression in the C. elegans Germline , 2008, Current Biology.

[31]  Iva Greenwald,et al.  Wnt signal from multiple tissues and lin-3/EGF signal from the gonad maintain vulval precursor cell competence in Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[32]  T. Schedl,et al.  Multiple Functions and Dynamic Activation of MPK-1 Extracellular Signal-Regulated Kinase Signaling in Caenorhabditis elegans Germline Development , 2007, Genetics.

[33]  Karin Kiontke,et al.  Trends, Stasis, and Drift in the Evolution of Nematode Vulva Development , 2007, Current Biology.

[34]  R. Schlegel,et al.  Cognate putative nuclear localization signal effects strong nuclear localization of a GFP reporter and facilitates gene expression studies in Caenorhabditis elegans. , 2007, BioTechniques.

[35]  Steven J. M. Jones,et al.  The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. , 2007, Genes & development.

[36]  P. Bastiaens,et al.  Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate , 2007, Nature Cell Biology.

[37]  Marie-Anne Félix,et al.  Cryptic Quantitative Evolution of the Vulva Intercellular Signaling Network in Caenorhabditis , 2007, Current Biology.

[38]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[39]  T. Tiensuu,et al.  lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. , 2005, Developmental biology.

[40]  Takaaki Hirotsu,et al.  Neural circuit‐dependent odor adaptation in C. elegans is regulated by the Ras‐MAPK pathway , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[41]  Alex Hajnal,et al.  The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. , 2005, Genes & development.

[42]  Iva Greenwald,et al.  Crosstalk Between the EGFR and LIN-12/Notch Pathways in C. elegans Vulval Development , 2004, Science.

[43]  B. J. Hwang,et al.  A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development , 2004, Development.

[44]  Min Han,et al.  Cis regulatory requirements for vulval cell-specific expression of the Caenorhabditis elegans fibroblast growth factor gene egl-17. , 2003, Developmental biology.

[45]  R Y Tsien,et al.  Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Kellie,et al.  A Functional Nuclear Localization Sequence in the C-terminal Domain of SHP-1* , 2001, The Journal of Biological Chemistry.

[47]  R. Caprioli,et al.  A Sperm Cytoskeletal Protein That Signals Oocyte Meiotic Maturation and Ovulation , 2001, Science.

[48]  A. Hajnal,et al.  Notch Inhibition of RAS Signaling Through MAP Kinase Phosphatase LIP-1 During C. elegans Vulval Development , 2001, Science.

[49]  B. Kobe,et al.  Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. , 2000, Journal of molecular biology.

[50]  V. Ambros,et al.  Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. , 1999, Development.

[51]  K Kornfeld,et al.  Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. , 1999, Genes & development.

[52]  A. Fire,et al.  Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. , 1998, Genes & development.

[53]  H. Horvitz,et al.  Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. , 1998, Genetics.

[54]  G. Blobel,et al.  Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α , 1998, Cell.

[55]  Stuart K. Kim,et al.  MAP Kinase Signaling Specificity Mediated by the LIN-1 Ets/LIN-31 WH Transcription Factor Complex during C. elegans Vulval Induction , 1998, Cell.

[56]  R. Burdine,et al.  EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in C. elegans. , 1998, Development.

[57]  S. K. Kim,et al.  Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. , 1997, Genes & development.

[58]  M. Han,et al.  A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in Caenorhabditis elegans. , 1996, Development.

[59]  H. Horvitz,et al.  An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites , 1995, Cell.

[60]  K. Guan,et al.  Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. , 1995, Development.

[61]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[62]  Geraldine Seydoux,et al.  Cell autonomy of lin-12 function in a cell fate decision in C. elegans , 1989, Cell.

[63]  Paul W. Sternberg,et al.  Pattern formation during vulval development in C. elegans , 1986, Cell.

[64]  H. Horvitz,et al.  The lin-12 locus specifies cell fates in caenorhabditis elegans , 1983, Cell.

[65]  J. Sulston,et al.  Regulation and cell autonomy during postembryonic development of Caenorhabditis elegans. , 1980, Developmental biology.

[66]  H. Lipkin Where is the ?c? , 1978 .

[67]  C. Spike,et al.  Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. , 2013, Advances in experimental medicine and biology.

[68]  P. Sternberg Vulval development. , 2005, WormBook : the online review of C. elegans biology.

[69]  J. McCarter,et al.  On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. , 1999, Developmental biology.

[70]  Paul W. Sternberg,et al.  A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans , 1987, Nature.