Scalable peer-to-peer networked virtual environment

We propose a fully-distributed peer-to-peer architecture to solve the scalability problem of Networked Virtual Environment in a simple and efficient manner. Our method exploits locality of user interest inherent to such systems and is based on the mathematical construct Voronoi diagram. Scalable, responsive, fault-tolerant NVE can thus be constructed and deployed in an affordable way.

[1]  Honghui Lu,et al.  Peer-to-peer support for massively multiplayer games , 2004, IEEE INFOCOM 2004.

[2]  Yoshihiro Kawahara,et al.  A Peer-to-Peer Message Exchange Scheme for Large-Scale Networked Virtual Environments , 2002, Telecommun. Syst..

[3]  Jörg Liebeherr,et al.  Application-layer multicast with Delaunay triangulations , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[4]  S. Singhal,et al.  Networked virtual environments: design and implementation , 1999 .

[5]  Reuven Bar-Yehuda,et al.  Geometric algorithms for message filtering in decentralized virtual environments , 1999, SI3D.

[6]  Michael Zyda,et al.  Exploiting reality with multicast groups , 1995, IEEE Computer Graphics and Applications.

[7]  Thomas A. Funkhouser,et al.  RING: a client-server system for multi-user virtual environments , 1995, I3D '95.

[8]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[9]  L. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi , 1985, TOGS.

[10]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[11]  Gwendal Simon,et al.  Solipsis: A Massively Multi-Participant Virtual World , 2003, PDPTA.

[12]  H. T. Kung Hierarchical Peer-to-Peer Networks , 2001 .

[13]  Katherine L. Morse,et al.  Interest Management in Large-Scale Distributed Simulations , 1996 .